
REPORT DOCUMENTATION PAGE
Form Approved

OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATJ
NählLföo^

3. REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE
Hybrid System Extraction of Control Automata with Small Topologies

5. FUNDING NUMBERS

DAAH04-96-1-0341

6. AUTHOR(S)
A. Nerode, J. B. Remmel and A. Yakhnis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Regents of the University of California
c/o Sponsored Projects Office
336 Sproul Hall
Berkeley, CA 94720-5940

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AftO 35~m.?/-Ai'WKU-fl

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the authors) and should not be construed as an official

Department of the Army position, policy or decision, unless so designated by the documentation.

12 a. DISTRIBUTION /AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
We propose a game framework for analyzing, extracting and verifying digital control programs for continuous plants by regarding
such programs as finite state winning strategies in associated games. We call such interacting systems of digital control
protrams and continuous plants "hybrid systems" and model them as networks of interacting concurrent digital programs or
automata, this extends to hybrid systems the paradigm introduced by Nerode, Yakhnis and Yakhnis for analysing
concurrent digital programs meeting program specifications as winning finite state strategies in associated two person games

19980521 086
14. SUBJECT TERMS

control strategies, hybrid systems, continuous sensing control automata
15. NUMBER OF PAGES

43

16. PRICE CODE

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
ON THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18

298-102

DTIC QUALITY INSPECTED 3 Enclosure 1

enter for
oundations of
ntelligent
lystems

CORNELL
UNIVERSITY

625 Rhodes Hall, Ithaca, NY 14853 (607) 255-8005

Technical Report
97-03

Hybrid System Games: Extraction
of Control Automata with Small

Topologies

A. NERODE, J. B. REMMEL AND A. YAKHNIS

June 1997

Hybrid System Games: Extraction of Control
Automata with Small Topologies

Anil Nerode*1 and Jeffrey B. Remmel**2 and Alexander Yakhnis***

1 Mathematical Sciences Institute
Cornell University, Ithaca, NY 14853

e-mail: anil@math.cornell.edu
2 HyBrithms Corp. HyBrithms Corp.*

11201 S.E. 8th Street, Bldg. J, Suite 140
Bellevue, Washington and

Department of Mathematics
University of California at San Diego San Diego, CA 92093

e-mail; jremmel@ucsd.edu
3 Mathematical Sciences Institute

Cornell University, Ithaca, NY 14853
e-mail: ayakh@math.cornell.edu

1 Introduction

Hybrid control is the control of continuous plants by sequential automata. This
usually means frequent changes in the continuous conventional control law applied
to the plant, changes based on sensor measurements of the trajectory. This typically
yields plant trajectories without smooth tangents at the discrete times when the
control law ordered by the control program changes. How and when to make these
control law changes is the business of the sequential automaton. The question is then
how should we model this and how can we find control sequential automata to meet
a prescribed performance specification.

We propose a game framework for analyzing, extracting and verifying digital
control programs for continuous plants by regarding such programs as finite state
winning strategies in associated games. We call such interacting systems of digital
control programs and continuous plants "hybrid systems" and model them as net-
works of interacting concurrent digital programs or automata, following [36], [37].
This extends to hybrid systems the paradigm introduced by A. Nerode, A. Yakh-
nis, and V. Yakhnis [38] for analyzing concurrent digital programs meeting program
specifications as winning finite state strategies in associated two person games. This
hybrid game formulation is intended to facilitate the transfer of recent tools from
logic, concurrency, and dynamical systems to extraction and verification of digital
control programs for continuous systems. Hybrid Games also facilitate infusion into

* Research supported by ARO under the MURI program "Integrated Approach to Intelli-
gent Systems", grant no. DAAH04-96-1-0341.

** Research supported by Dept. of Commerce Agreement 70-NANB5H1164.
** supported by DARPA- US ARMY AMCCOM (Picatinny Arsenal, N. J.) contract

DAAA21-92-C-0013 to ORA Corp.
* HyBrithms Corp was formerly know as Sagent Corporation

hybrid systems theory of many ideas from the traditional differential game approach
to control.

The Basic Model

We now introduce our basic model for Hybrid Control which is essentially the
same as the model discussed in [24]. A finite control automaton is an automaton
with finite input and output alphabets and a finite number of internal states. Its
input letters are fired by measurements of plant state. Its output letters are control
signals, that is mode switches, for the plant controller. Our basic model for a simple
hybrid system consists of the following.

1. A finite control automaton, which is usually thought of as some sort of logical
device or program which makes inferences based on current information about
the plant state to deduce when to change control laws for the plant. See Kohn-
Nerode [24], [25].

2. A continuous plant controller obeying the control law currently supplied by the
finite control automaton.

3. A continuous plant being controlled. We include in the plant the physical plant
controller (actuator), but not the finite control automaton feeding control orders
(mode switches) to the physical plant controller.

4. An analog-to-digital or, equivalently, a signal to symbol, converter supplying to
the finite control automaton as input digitized sensor data sampled from the
plant.

5. A digital-to-analog or, equivalently, a symbol to signal converter converting sym-
bolic control orders output by the control automaton into a control function of
time regulating the parameters of the physical plant controller.

These elements are pictured in Figure 1.

ANALOG WORLD

Disturbance

Ph liil '

Sensor

AD Converter DA Converter
,

r - -

Digital Control Automaton

DIGITAL WORLD
Figure 1.

We summarize the essential features of hybrid systems model of [24]. We think of
the sequential control automaton as completing "work cycles" in successive intervals
Atk of time. During the interval Atk, a control law Uk which is imposed by the se-
quential control automaton at the end of the previous interval is active in controlling
the system. Also the sequential control automaton is subject during Atk to an input
Vk to the system. During the first phase of Atk, the sequential control automaton is
accumulating a sensor data history s about the system through the analog-to-digital
converter. The sequential control automaton starts interval Atk in a certain initial
state, uses s to compute a new control law Uk+i and a new automaton state and,
at the end of Atk, it outputs Uk+i through the digital-to-analog converter to the
plant controller for use in the next interval Atk+i. Then all processes start over for
Atk+i- We envisage the input as encoding all the partial information available to
the control automaton about the state of the plant. A hybrid control run thus will
be a possibly infinite sequence

U0,«0,«l,Wl,----

We shall see that it is very natural to view such a hybrid control run as play of a
game between two players, Plant and Control. That is, Control and Plant alternate
moves in a game in which Control moves by listing full information about control law

Uk for Plant's use, and then Plant moves by listing the partial information Vk about
the plant state for Control's use. The range of values of Uk and Vk and the relationship
between u* and Vk is dependent on the particular application. Then, in the spirit
of [38], we can view a successful sequential control automaton as implementing a
winning strategy for Control. That is, in any play in which Control follows the
winning strategy and Plant plays according to the rules of the game, i.e. follows
its differential equations, the plant trajectories will meet the desired performance
specification.
Performance Specifications

Our performance specifications are usually open sets of trajectories. Quoting an
example of Kohn, the Boeing 737 was to be designed so that if a cup of coffee is
no more than 3/4 full anywhere in the aircraft, it never spills during maneuvers.
This is not a conventional optimality requirement. It is a "perform sufficiently well"
criterion which we call an e-performance criterion or, alternately, an e-optimality
condition. For example, such a criterion might require that we produce a trajectory
whose costs is within a user defined e of the minimum cost trajectory.
Outline of Paper

In sections 2 and 3, we present game models for extraction, analysis, and veri-
fication of control strategies for simple hybrid systems. All games will be between
two players, Plant and Control. The objective of any game is for Control to force
Plant to obey its performance specification. In the game model presented in section
2, measurements of Plant state are made at discrete times (discrete sensing) and
changes in the control order to the plant are also made at discrete times (discrete
mode switching). Such games are an adaptation to hybrid systems of the games of
A. Nerode, A. Yahknis, and V. Yahkinis [38]. The latter were introduced to extract,
analyze, and verify digital concurrent programs.

In Section 3, we introduce "continuous sensing games" to model plants charac-
terized by continuous dynamics, such as a system of ordinary differential equations,
with a controller which continuously senses the plant state. We assume that the
controller is allowed to reset the parameters of the plant dynamics at a sequence of
discrete times only. Such controllers allow us to model directly analog sensors which
continuously sense the plant state and which output exact real number control pa-
rameters to the physical plant controller at discrete times. In most cases, we will
assume that the values output by the controller are purely digital, one of a finite
number of control order, to be implemented by a digital to analog converter. Even
in such cases, such a controller must be regarded as non-digital if the input values
allowed are exact real numbers, even if there are only a finite number of internal
states and a finite number of output control orders (mode switches). Our method-
ology is to start by extracting a continuously sensing, discretely acting, feedback
control function which meets the performance specification. The discrete sensing
games of Section 3 can then be thought of as subgames of continuous sensing games
in which the information sensed between discrete sampling times is ignored.

Thus continuous sensing games are a second class of games between two players,
Plant and Control. After each control order is sent by Control to the plant, Plant
displays a segment of a plant trajectory y which begins when control order is given,
with initial condition the plant state at that time, and which ends when the next
control order is issued. We can think of this segment as a contiguous block of Plant

moves, one at each time in that interval. In this picture the Plant move at a time
r > t in the interval is just the plant state y(r). In the same picture, a Control
move occurs at the same instant r and is either no action or a control order. We call
the latter moves essential Control moves. We assume that essential Control moves
occur only at a discrete sequence of times. Each such time is the end of a block of
Plant moves. According to this picture, in a continuous sensing game, Plant plays
continuously, Control has continuous knowledge of Plant moves, and Control makes
essential moves only once in a while.

The motivation for introducing continuous sensing games is that they help us
extract strategies for a digital controller which will meet performance specifications.
The idea is that it often easier to find a (non-digital) continuous state strategy
for Control in a continuous sensing game which forces the plant to meet perfor-
mance specifications. We then extract a finite state strategy for a finite state digital
controller doing approximately the same thing by approximating to the continuous
strategy for the non-digital controller using the Kohn-Nerode method of extracting
finite control automata from finite open covers.

In Section 4, we discuss performance specifications and the Kohn-Nerode method
cover method ([24], appendix 2). It works as follows. Suppose we are given a con-
troller which meet an open specification. Then the Kohn-Nerode method takes an
open finite cover of that controller within the open specification and interprets it as:

1. A finite automaton with a finite input alphabet and a finite state alphabet.
2. A digital to analog converter.
3. An analog to digital converter.
4. A control automaton for the plant.

When considered as a hybrid system, the plant plus the automaton derived from
the cover forces the plant to obey the open performance specification. We carry
out this process for a simple model of a water pump used to maintain a certain
range of values of the water in a water tank. That is, we shall explicitly construct
a strategy for Control in a continuous sensing game which models this system and
then show how we can easily approximate such a strategy to construct a strategy
for Control in a corresponding discrete sensing game. Finally we shall show how this
enables us to design a digital control automaton for the hybrid system which meets
the performance specifications as well as how to construct the Kohn-Nerode small
topologies for the hybrid system which will verify the controllability-observability of
the system in the sense of [24].

2 Games with Discrete Sensing and Discrete Mode
Switching

In this section, we provide a game setting for the specification, extraction, and veri-
fication of digital control programs for hybrid systems. Extracting a control program
for a continuous plant which forces the plant to obey a performance specification
is identified with extracting a winning finite state strategy in an associated game.
The performance specification itself is identified with a set of acceptable plant state

trajectories. The games introduced in this section and the next section, each have
two players, Control and Plant. In our games, we represent the effect on plant state
of unknown disturbances and uncertain measurements by allowing multiple legal
moves for Plant. For example, one source of multiple possible moves for Plant is
that, with a given initial condition, each disturbance over a time interval [t, t + A]
can yield a different plant state trajectory over that interval and hence a different
final plant state at the end of the time interval. Another source of multiple Plant
moves is measurement errors. We assume Control sends perfect information to the
physical plant controller, namely a suitable control law for the next interval of time.
However Plant sends imperfect information to the Control program, namely sensory
measurements of plant state with error. Thus our games are games with perfect
information on the control law transmitted by Control to Plant, but with imperfect
information on Plant state transmitted to Control by Plant.

Our game approach is different from traditional methods of extracting control
in the presence of disturbances or measurement uncertainties. For example, one tra-
ditional control engineering approach is to start instead with a deterministic plant
model which does not incorporate either disturbances or measurement uncertainties,
to proceed to extract a suitable control program for the deterministic model, and
afterwards to determine the effect of small changes in measurements and param-
eters on observability, controllability, and stability of the hybrid system. Another
approach is to model the Plant by stochastic differential equations in the first place,
and to look for stochastic control programs with optimal control features. A third
approach is to use a two person differential game between Control and Plant or be-
tween Control and Disturbance. This usually entails extracting continuous control
strategies which change control values continuously, based on continuous measure-
ments of plant state. To extract such a continuously sensing continuously controlling
strategy using differential games usually requires elaborate mathematical apparatus
when it is possible at all. Our games approach differs from all three. Control strate-
gies are not derived directly from a deterministic model. The model does not involve
stochastic processes. It is a game approach, but not the usual differential games
approach. In our games, one player, Plant, is constrained to follow a differential or
difference equation guided by controls and subject to disturbances. The change is
that, in our games, measurements of Plant state are communicated to Control only
at discrete prescribed times, while a change in the control function imposed by Con-
trol on the Plant can be imposed instantaneously. The changes imposed by Control
on the plant are event-driven based on the current state of the control automaton
and the current measurement of plant state. Restricting Control in this way is nat-
ural if Control is to be a digital program, since a digital program changes its state
based on a discrete sequence of successive input symbols representing plant measure-
ments. Even if Control is not restricted to a digital program with finite alphabets
and states, the discrete sensing, discrete mode switching control strategies turn out
to be useful as intermediate idealized programs to extract before refining them to
finite state strategies which give controllable-observable behavior.

The system model underlying our game is the hybrid systems model of Kohn-
Nerode, [24] and [25], to which the reader is referred. The games approach stems from
the Nerode-Yakhnis-Yakhnis [38] formulation of extracting concurrent programs as
solving an appropriate game. The hybrid systems games were first announced in

Nerode-Yakhnis [36],[37].
Control automata which sense plant state at discrete times but exercise control

over the plant continuously, with only occasional mode switching, operate in the fol-
lowing way. Their input alphabets, internal states, and output alphabets can be any
finite or infinite nonempty set. They can be regarded as non-deterministic automata
operating in continuous time. They change their input alphabet letter and internal
state instantaneously at a discrete sequence of time instants only, being in the pre-
vious automaton state in a non-empty open interval preceding each such moment.
These are the moments when sense data about the plant are communicated to the
control automaton. Only at these times does the control automaton instantaneously
change its output letter, called a control order. This output letter is to be interpreted
in applications as a control order to the plant physical controller to change the con-
trol law used in that physical controller. For instance, in Kohn-Nerode extraction
procedure [26, 15], this issued control order is a chattering control implemented via
a finite sequence of "primitive" control actions, each specifying a physical controller
parameter to be used for some period. Such a control order is a finite sequence of
infinitesimal generators of flows. Each flow is to be followed in the prescribed order
for a prescribed relative duration of the interval of time over which this control order
persists.

In summary, control orders, or mode switches, are issued by the control au-
tomaton on an event driven basis based on past sense measurements of plant state.
Although we allow the set of control automaton states to be infinite, in all our ex-
amples the automaton will be finite state, while the input alphabet representing
possible sense measurements will be infinite.

Next we describe the underlying assumptions on the plant model and the control
automaton for our basic discrete sensing game.

We assume as a physical realizability requirement that the discrete times at
which the the control automaton issues control orders, to < *i < *2 < <3 < —-, have
a positive lower bound for the differences U+i — U. This usually called the Zeno
requirement. We call these sequences admissible time sequences. In this section, we
shall assume that for all i, U+i — ij = T is a fixed positive constant T. In a later
section, this simplification is dropped.
Plant model

Our basic assumption of the plant model are the following.

1. We assume the plant is modeled by an ordinary vector differential equation

y(t) = f(t,y(t)Mt),d(t)),

where y(t) is the plant state, u(t) is a control function, and d(t) is disturbance
function.

2. The time t will range over the real interval [0, oo). Plant state trajectories y(t),
control functions of time u(t), and disturbance functions of time d(t) will be
defined on [0, oo).

3. The function y = y(t), which we call the plant state trajectory, takes values
in X, the set of plant states. There will be a class «S of admissible plant state
trajectories.

4. The function u = u(t) takes its values in a set U of admissible control values.
There will a class C of admissible control functions.

5. The function d = d{t) takes its values in a set D of admissible disturbance values.
There will be a class V of admissible disturbance functions of time.

6. The sets of admissible plant states, control values, and disturbance values are
assumed to be subsets of fixed finite dimensional Euclidean spaces.

Here is the kind of problem we want to solve. Suppose that a subset V of the
plant states is specified, which we call the viability set. Suppose that a subset of the
viability set V is given, which we call the 50a/ set G. We want to extract a control
strategy which satisfy the following conditions.

1. Starts the plant at time to in a prescribed plant state j/o in the viability set V.
2. Ensures that at all subsequent times t, the plant state y = y(t) is also in the

viability set V.
3. Ensures, as a winning condition for the game, that the plant state enters the

goal set G by a designated time. (Alternative winning condition might that the
plant state eventually enters the goal set G or the plant state must enter G in a
certain time interval (tfx, tf2).)

All the control automaton can do at time t is to define the control law for the
next interval to be incorporated into the control function of time. But the control
automaton has no influence over the disturbance function of time d = d(t) encoun-
tered. Thus the control automaton must select the next control law in such a way
as to keep the plant state in the viability set V and lead to the goal, at a designated
time or eventually, as required, no matter what admissible disturbance function is
encountered.

All the information the control automaton has available to decide what new
control to impose is its own automaton state plus the current sensor measurements
of plant state.

In summary, the problem is to construct a control automaton which, given both
its current state and measurement of plant state at the end of the current interval,
changes to a new state and outputs new control law to be used for the next interval
such that if the plant state starts at time to in the viability set V, with a prescribed
initial control, the plant state trajectories stay entirely within V and either enters
the goal set G by a prescribed time or alternately eventually enters the goal set G.
Admissible Control Functions

Assume that the set of admissible control functions C is a set of functions which
contains a set of functions Co from [0,1] to U. If a < b, and c is a control law from Co,
then the corresponding control law on [a, b] is defined as the function c((t—a)/(b—a)).
Our minimal assumption on the set of admissible control laws C is the following.

Suppose that u maps [0,00) into U and there exists a sequence of times
*o < h < h < h < such that for every n, there is a function c in Co for
which c corresponds to u restricted to [tn,tn+i)- Then u is in C.

We also assume a similar relation between the set Do of admissible disturbances
mapping [0,1] to V, and the set of admissible disturbance functions V of time map-
ping [0,00) to D. We do not specify exactly the closure conditions on C or on V. In

some contexts, C is the set of all continuous functions, V is the set of all measurable
functions, etc.
Uniqueness of Plant State Trajectories

We assume that each admissible control function and disturbance function gives
rise to a unique plant state trajectory. That is, suppose the classes C, V and the plant
function / are given. We shall assume that our plant model satisfies the following
condition.

Given an admissible control function u, an admissible disturbance function
d, an admissible plant state j/o, a time to, there exists a unique admissible
plant trajectory function y = y(t) with domain [fo.oo) such that y(tQ) = y0

and for alii > to, V satisfies

y(t) = f(t,y(t)Mt),d(t)).

Bounded Measurement Error
We assume that if y is a plant state and m is its measurement, then there exists

an e > 0 such that \y - m\ < e.
We are now in position to define the legal positions of the a discrete sensing

game. Assume that we are given a fixed admissible time sequence U = to + iAt.
Game Positions

Each (legal) position in the game will be a sequences of moves

m0, Co, mi, ci,..., mn, c„

alternating between the players, with Plant moving first. Plant makes even numbered
moves. Control makes odd numbered moves. Here is the simultaneous inductive def-
inition of the notion of (legal) positions of the game, and of the trajectory associated
with a position.

1. Suppose that p is the opening (null) position. Plant may choose as a move any
admissible Plant state mo. We call any admissible state x such that \x — mo| < e
a trajectory associated with that position. That is, we interpret each such a; as a
possible measurement of true Plant state mo at time to, and also as a degenerate
trajectory starting and ending at to-

2. Suppose that p is a position p of odd length. Control may choose as move any
admissible control law c from C. The trajectories associated with position pc are
the same as the trajectories associated with p.

3. Suppose that p = p'c is a non-null position of even length with c its last move
made at time ij. Inductively, suppose we have already defined the set of all
plant trajectories associated with p'. Then Plant may choose as move at position
p any m such, there exists a trajectory associated with p whose end state z
has \z — m\ < e. Inductively, we define the trajectories associated with the
position p, m as those trajectories extending at least one trajectory associated
with p to a trajectory defined also on [ff,tj+i] which solves on that interval the
same differential equation, using the control function of time on that interval
associated with c and using some disturbance function of time on that interval
associated with an admissible disturbance. Thus for any n, if Control makes

move c at time tn, then the control function of time applied to the Plant in
[*n,*n+i] is c(t - tn)/(tn+i - in))- If d is in D0, the corresponding disturbance
function of time on the time interval [t„, *n+i] is d((t — tn)/(tn+i — tn)). Due to
our trajectory field assumption, on [tn,tn+i], there is a unique plant trajectory
y = yXyCtd,t„ determined by the plant state x(t„) on the trajectory x(t) associated
with p, together with the control law c from Co and the disturbance d from Do
and the differential equation.

»(*) = /(*,»(*).«(*)»*(*))■

For any x (in a Euclidean space) define Ball(x,e) = {y G En : \x - y\ < e}. For
any subset Y the space, define Ball(Y, e) = \Jx€yBall{x, e) The plant moves m
can then be described as

{z e Ball(PlantStates,e) | (3 v € D)(\yx<c,v<u(U+i) -z\< e}.

We define the set of finite plays of the game to be the set of legal positions
described above. An infinite play is an infinite sequence, each finite initial segment
of which is a finite play. Trajectories associated with infinite plays are similarly
defined.

There are alternate definitions of "winning the game", depending on what control
problem has to be modeled. For example, given the basic control problem of trying
to bring the plant from some initial point x in the viability set V to a point in the
the goal set, G, the appropriate notion of "winning the game" is as follows.
Winning a Play

We say that Control wins play ft, or alternately that n is a winning play for
Control, if

1. n is a finite play.
2. For the last Plant move m of fi, Ball(m, e) is a subset of the goal set G.
3. All states traversed along all plant trajectories associated with \i are in the

viability set V.

We note that there are other natural notions of winning plays depending on the
control problem to be solved. For example, we might define Control as winning a
play if all associated plant trajectories stay in an e neighborhood of a fixed curve
in plant state space. For example if 4>(t) is optimal plant trajectory with respect to
some Lagrangian L, then we might take the viability set V for this example as the
set of pairs (a:, t) such that a; is a plant state and t is a time and \x - <j>(t)\ < e. Our
games can easily be modified to deal with a variety of control problems.

A strategy for Control is a map F from the set of positions of the game of odd
length into Co. The idea here is that, given a play mo, CQ , mi, ci,..., m„, the function
F(mo,co,mi,ci,...,m„) = c« determines the next move of Control. We say that a
play P = mo,co,mi,ci,...,mn,Cn is generated by the strategy F, or that p is play
in which Control follows F, if for all i, Ci = F{mo,co,m\,c\,...,rrii). Strategies for
Plant can be defined in a similar manner.

The notion of which strategies are winning for Control depends on the definition
of what it means for Control to win the game. In the remainder of this section a
strategy F for Control is a winning strategy if, whenever Control follows F, Control

will eventually reach a winning position, no matter what initial position mo in the
viability set V is chosen by the Plant to start the game and no matter what the
subsequent moves of Plant are.

An automaton strategy for Control is an automaton with the following properties.

1. The set of automaton states S is any non-empty set.
2. The automaton input alphabet is Ball(V, e) where V is the viability set.
3. The automaton output alphabet is Co.
4. The automaton transition table M(s,m) and its output function H(s,m) are

such that the output is produced simultaneously with the automaton shifting to
its new state r € M{s,m).

We call such an automaton a control automaton.
We say that a Control automaton strategy generates a play

fi = m0,co,mi,Ci, ...,m„...,c„.

1. Co = H(so,mo) and the next control automaton state is si = M(so,mo) where
so is the initial state of the automaton.

2. At time tk = <o + kT in a position with last Control move c* and last Plant
move mjt, the next control automaton state is sjt+i = M(sk,mk) and the next
control law is Ck+\ = H(sk,mk)-

We say that an automaton strategy for Control, or equivalently control automa-
ton, is winning for Control if whenever Control generates plays following the control
automaton as described above, then Control will reach a winning position, no matter
what initial move mo in the viability set V is chosen by the Plant to start the game,
and no matter what the subsequent moves of Plant are.
Finite Input-Output Alphabet Games

Real digital controllers are finite state machines with finite input and output
alphabets. We adapt our definitions for using such controllers as Control strategies.
First let V be a finite subset of Ball(V, e) such that

(VyeV)(3y'eV)(\y-y'\<6).

Then if we we replace V by V in all the definitions above and we assume that the
set of controls Co is finite, then we have defined a subclass of games which we call
finite alphabet discrete sampling games. For these games the control automata are
always finite automata.

We end this section by giving an explicit example of how a problem that has been
studied in the literature can be expressed in game language.

Railroad Problem: This is a variation of a problem considered by Schneider
and Marzullo [32]. Here the plant is a train whose plant state space consists of pairs
(y, C) where y is a position on a line and £ is the train velocity at that position. Thus

the plant space is a subset of a 2- dimensional Euclidean space. The plant dynamics
are given by

where u is a control parameter and v is the train engine acceleration. Sensors can
measure the train position and velocity with known error bounds. We assume that
there is a common bound e on uncertainty in position and velocity. There is a
viability set V based on a partition of the track into contiguous blocks. For each
block, there are regulations requiring that certain minimum and maximum velocity
bounds be respected when the train is on that block. That is, suppose there are
n > 1 blocks, and each block is defined by its beginning position and its length
(bi,ln,i), 0 < i < n — 1. The corresponding velocity bounds are (mini,maxi). Thus

V = {(y, C) I h < y < hi + Irii =£• C £ [mini, maxi], 0 < i < n - 1}.

The velocity is assumed to be in a fixed direction along a straight railroad line.
Hence all positions of the train are in that direction from the initial position 0.

The goal set is defined by a distance D > 0 from the origin where

D < Yl lni-
0<»<n-l

That is,
G = Ball((D,e) x {0}.

The problem is to guide the train to stop within the interval [D — e, D + e] while
satisfying the blocks constraints along the way.

3 Continuous Sensing, Discrete Mode Switching

In this section, we define a second class of games which we call continuous sensing
games. Throughout this section, we keep the same set of assumptions on the plant
model and continue that same notation as used in section 2. Our basic underlying
model is a hybrid system in which the plant state is sensed continuously, but new
control orders (mode switches) are issued at discrete times. We illustrate this idea
with the following simple example.
Water Level Monitor

Our water level monitor is a generalization of an example analyzed in [1]. The
plant consists of a water pump and a water tank. The controller issues control orders
to turn on or turn off to the pump. The plant state is the pair consisting of the water
level y > 0 and the state of the pump pmp G {on,off}, telling whether the pump
is on or off. The state of the pump determines the dynamics of the water level. We
assume that the water level y satisfies

• _ f /i (y) if the pump is on ,_
1 h(y) if the pump is off ^ '

where /i and ji axe continuous functions such that

0 < a' < fi(y) < a, for all y and
0 > -V > f2(y) > -b, for all y.

Moreover, we shall assume that there are constants L\ and Li such that for all
x and y, \fi(x) - fi(y)\ < U\x - y\ for i = 1,2.

Thus the states of the plant can naturally be partitioned into two disjoint classes;
one class where the pump is on and the other class where the pump is off. The
controller has two control actions {pon,poff} which cause transitions between the
two classes of plant states. We assume that the transitions take time up to d > 0,
the delay, to complete. That is, until a transition has been completed, the pump
is regarded as being in its preceding state and the corresponding equation for the
water level dynamics applies.

Our controller has only two states: {son, soff}. The action of the controller is
the following. If the controller receives a measurement y of the current water level
when the controller is in state son, then it checks whether the condition y > g holds
where g > 0 is a given constant. If the condition holds, then the controller outputs
a order poff to cause the pump to be turned off and the controller shifts to the
state soff instantaneously. Otherwise, the controller remains in its state son and
outputs no order to the pump. If the controller is in the state soff and receives
a measurement y, then it checks whether the condition y < h holds where h > 0
is another constant. If the condition y < h holds, then the controller outputs the
order pan to cause the pump to be turned on and instantaneously shifts to the state
son. Otherwise, the controller remains in the state soff and outputs no order to
the pump.

We note that while the controller instantaneously shifts to a new state, the pump
does not instantaneously change its corresponding state, so the controller may lose
the natural correspondence between its state and the state of the pump. Note also
that the controller is not digital, since it is expected to act at the exact instant when
the water level satisfies the conditions causing the controller to shift states and the
water level is measured continuously.

The controller and the plant interact forever. We wish to find those values of
(g, h) which will guarantee that the water level is maintained forever between two
constants 0 < u < v. That is, we want to design our controller to pick (g, h), so that
at all times t, u < y(t) < v.

Formally, a plant state is a pair (y(t), z(t)), where y(t) is the water level, z(t) = 1
if the pump is on at time t, and z(t) = 0 if the pump is off at time t. The control
parameter takes on only two values, 0 and 1, where 0 indicates that the pump has
been told to turn off and 1 indicates that the pump has been told to turn off.
There is no disturbance. The space of control laws is the set of piecewise constant
functions with values in U = {0,1}. The dynamics of the plant has a form given
by (1). The conditions on the fc which ensure that the systems always has unique
fully extendible trajectories for any given initial condition, given at the end of the
section, are satisfied.

This ends temporarily our discussion of the the water tank example. We go on
to the definition of a general class of games which will describe examples like this
one.

Next we present two equivalent game models for continuous sensing games.

Game Model I
We begin with a plant given by an ordinary differential equation with control

and disturbance. We consider the set of plant trajectories that begin at a time to
at a points xo and satisfy the plant dynamics described at the previous section for
some admissible set of control functions C and some admissible set of disturbance
functions V. We write TRAJ for the set of all functions Y(t) : [*o,oo) -¥ X such
that there exists a control function u 6 C and a disturbance function v € V such
that

1. Y(t0) = xo £ X and
2. Y(t) = f(t,Y(t),u(t),d(t)) for all t > t0.

We are assuming that there is a unique Y € TRAJ corresponding to any choice of
to, Y(t0), «(*), and d(t).

Here is the game. There are two players: Plant and Control. Plant moves are
taken from X but their choice is governed by certain members of TRAJ. Control
moves are taken from the set (C U {no action}) x [0, oo). Suppose the game starts at
time t*. The exchange of moves between Plant and Control results in a function of
time

tit) = (v(t),z(t))

where y(t) € X and z(t) E (C U {no action}) x {t}. A value of such function at
time tisa pair of the last plant state y(t) observed and the corresponding Control
move which we regard here as occurring instantaneously. To determine its next move
z(t), Control may utilize all values of j/(r) at all times r up to and including t. We
call such a function \i a play, if the following is true. There is a strictly increasing
sequence of times {tk : k > 0,to = t*} such that for every A; > 0, z(tk) £ C x {£*}
and for every t € (tk,tk+i), z(t) = (no action,t) and y(t) = !*(<), where >*(.)
is a member of TRAJ determined by tk,xo = y(tk), the control law in z(tk), and
some admissible disturbance d(t) e D. That is, if z(tk) = («*(.),ijt), then Yk(t)
satisfies that Yk(tk) = y{tk) and Yk(t) = f(t,Yk(t),Uk(t), (<)) for all tfe < t for some
admissible disturbance function d(t). We call the moves of Control at the times tk for
k > 0 essential Control moves and the moves at the time t $ {tk : k > 0}, i.e. where
z(t) = (no action, t), inessential Control moves. IS the sequence {**; : fc > 0, to = t*}
is finite with the last index being n, we put tn+i = oo and the above definition of a
play applies.

Definition 1. Call a sequence {tk : k > 0} realizable if

inf{(t0 - t*), (tk+1 -tk):k>0}>0.

Call a play of the game, realizable if the sequence of instances of essential Control
moves in it is realizable. We will consider that the plays which are not realizable are
lost by Control.

Game model II
Next we will describe the plays in our continuous sensing game in a slightly

different but equivalent way in order to bring out the resemblance with those games
in which moves alternate in discrete time. Only the essential control moves will be

displayed in plays. Assume that, at the start of the game the time is t*, the plant state
is x* 6 X, and the initial control law is u*{t). We define a block to be a contiguous
segment of a play over a right-open interval of time where the corresponding Control
moves are inessential except for the leftmost Control move. A block may be infinite
if there is no essential Control move after it. In presenting a block, we suppress
the inessential Control moves in it and we specify the moves of Plant by giving
the element Y € TRAJ that determines its moves in the segment. We remove the
Control move from the leftmost pair of moves in the block and place it in front of the
block not regarding it as a part of the block. A play of the game is thus represented
as a sequence of blocks alternating with a sequence of essential Control moves. Finite
sequences of this sort are called the positions of the game. A play is a sequence of
positions such that each next position extends the preceding one. We will describe
all admissible positions by means of induction on the length of positions. We will
simultaneously define by induction a segment of the plant trajectory corresponding
to a position in the game. Thus we will define, by induction on n, the positions pn,
the plant trajectory segment jn corresponding to the position p„, and the right ends
t(n) of the domains of 7„.
(l)n = l.
Then we let pi = (u*(.), t*). The corresponding segment 71 of the plant trajectory is
a single point (t*, x*), i.e. 71 (t*) = x*. We denote the right end of the time interval
of 71 as t(l) = t*.

Next suppose that the positions pn_i corresponding to n - 1 successive admissi-
ble moves are defined along with the corresponding plant trajectory 7„_i which is
defined over the interval [t*,t(n - 1)].
(2) n = 2 • k + 2.

Suppose pn-i = (u*{.),t*) ■ B0 • z0 ■... • Bk- 1 ■ Zk-i- Then the next admissible
block Bk of Plant moves is specified by any member Y* : [t (n -1), 00) ->• X of TRAJ
such that Yk(t(n - 1)) = 7„_i(t(n - 1)) and satisfies

Yk(t) = f(t,Yk(t),uk-i(t),d(t)) for all t > t(n - 1)

where Uk-i(-) is the control law Uk-i(-) that occurs in the last Control move Zk-i
and d(.) G V. The plant trajectory corresponding to the pn is the function jn :
[t*, 00) -> X defined by

^ /rt _/7»-iW * *G [**.*(»-!)]
7n[)~\Yk(t) iftX(n-l).

(3) n = 2 • k + 3.
Suppose pn-i = (u*(.),t*) -Bo-zo-... • Bk-i ■ zk-i • Bk. Then a position of length

n extending pn_i is of the form, p„ = p„_i • Zk where zk is any Control move of form
(uk(-),tk) such that t* > tk-i and Zk-i = (ufc-i,*t-i)- We then put t(n) = tk and
7„ equal to 7„_i restricted to the interval [t*,t(n)].

An infinite sequence of positions, linearly ordered by extension, defines an infinite
play. All finite sequences of the form

(«*(.), t*) -BO-ZQ- ... ■ Bk-i ■ Zk-i ■ Bk

are plays too. Plays which are not realizable in the sense of definition 5.1 are regarded
as lost by Control.

It is easy to see that there is a natural bijection between the plays of Game Model
I and the plays of Game Model II.

Remark For convenience of notation, we will suppress the symbols for blocks
Bk of Plant moves and use instead the plant trajectory 1* which specifies the block.
We also suppress the first move in the plays described inductively above because we
regard it as fbdng the game. That is, the initial move simply corresponds to giving
initial settings of the plant, including initial control parameter values. Thus we will
denote a play by a sequence of the form

Yo,zo,Yi,zi, ••■iYk,Zk,

According to our definition, each of the trajectories YJ : [tj_i,oo) -> X is infinite.
(Here we make the convention that t-i = t*). Of course, in the case when there
is another essential control move after time *»_i, we only use the finite trajectory
segment,j/i = Yj restricted to [*»_x,<»], to determine the final plant trajectory. Thus
an even more compact notation for a play is a sequence of the form

yo,zo,yi,z\,...,yk,Zk,—

We note, however, that this last notation could be misleading since it makes it appear
that the time of the next essential move of Control is part of the previous move of
Plant. A move of Plant does not force the timing of the next essential Control, this
is forced by Control's strategy.

A winning condition for Control is a set of realizable plays whose corresponding
plant trajectories 7 satisfy the performance specification imposed on the hybrid
system. For example, in the water level game, the performance specification is that
for all t, u < y(t) < v.

We are interested in existence of winning strategies for Control in such a game.
Intuitively, a strategy is any kind of systematic behavior of Control in a game which
determines its next move on the basis of the knowledge of the previous moves of the
players in a play. A winning strategy is a behavior that is

1. defined for all positions which are reached while using such a behavior and
2. all plays generated by such a behavior are winning for Control.

Following Buchi, we consider a description of such a behavior by means of an au-
tomaton whose input alphabet is the set of the opponent's moves X, and whose
output alphabet is (C U {no action}) x [0,oo). We do not require at this point that
either of the alphabets be finite and we do not require that the automaton set of
states be finite.

Such an automaton is to be capable of continuously reading its input. At the
end of this section, we give a formal definition of a continuous input-discrete output
automaton and describe sufficient conditions for such an automaton to generate
exclusively realizable plays.
Modeling Delays We can model a delay in resetting the next control law to
be imposed on the plant. Such a delay may depend on the current control and on
the next control law. We assume that the two laws determine an upper bound d

for the reset time interval. We model this in the game rules for Plant. If Control
makes a move (u*(.),tk), we view this as an order to reset the current control law to
Ufc(.). The actually time Tk at which we change to the new control law will be some
Tk € [tk, ifc + d]. The Plant moves which form the next block will be of the form

vM_jYk-i(t) for tk<t<Tk
YkW-\Zk{t) iOTt>Tk

where Zk mapping [T*,OO) into the plant states is the unique trajectory determined
by the initial condition Zk{rk) = Yk-i(Tk), the control law Uk(.), and an admissible
disturbance function d(.). All the rest is as in the preceding definition of the game,
except that it is the reset times, rather than the time Control moves, which determine
the plant trajectory corresponding to a play. The realizability of a play is determined
by the sequence of reset times, so we must assume that for any k, tk+i — tk exceeds
the positive lower bound d.

3.1 Uniqueness and Extendibility of Plant Trajectories

Next we discuss sufficient conditions for the plant trajectory corresponding to a
play to be unique and continuous. For an example of such a condition, consider the
Caratheodory conditions ([12]) to be imposed on the plant model / modified to allow
control and disturbance parameters.
Caratheodory Conditions

We consider plants modeled by the vector ordinary differential equation

y = f(t,y,u,d)

where t G [to, oo), x € X, u 6 £/, de D, and which satisfy the following conditions.

CC 1: For every u and for almost all t, the function f(t, x, u, d) is continuous
in (x,d).
CC 2: For every u and every x, the function / is measurable in (t, d).
CC 3: For every u, there is function m(.) over [to, oo), which is Lebesgue in-
tegrable over every finite interval of its domain and such that \f(t, x, u,d)\ <
m(t) in [*0)Oo) for every x and d.

Theorem 2. Suppose that the admissible control laws are piecewise constant over
time, that disturbances are measurable functions over time, and that the plant dy-
namics f satisfy Caratheodory conditions CC 1-CC 3. Suppose also that

1. The plant state space X coincides with the Euclidian space containing it.
2. For every u Q.U, there is a function L(.) over \to,oo), which is Lebesgue inte-

grate over every finite interval of its domain, and such that
\f(t,x,u,d) — f(t,y,u,d)\< L(t)-\x— y\ for every x, y and d, and

3. For every u, there is a constant a such that \f(t, x, u, d)\ < a ■ (1 + |x|) for all t,
x and d.

Then to every realizable play in the continuous sensing game described above, there
corresponds a unique absolutely continuous plant trajectory defined over [t*,oo),
where t* is the time the play begins.

Proof. We show by induction on k the uniqueness and absolute continuity of the
plant trajectory 7 corresponding to a segment of a play up to time tk and defined
over the interval [£*,£*]• It is sufficient to do the inductive step. Assume that the
statement is true for A;.

(A) If there is no essential control move after tk, consider

»(*) = f(t,y(t),uk,d(t))

for t > tk- Here d(.) is a measurable disturbance that occurs in the plant for t > tk,
Uk is the value of the constant control function which is part of the essential Control
move at tk. We have to show existence, uniqueness of an absolute continuous function
satisfying the differential equation for t > tk and beginning from the point 7(4).
This would yield an absolutely continuous extension of the plant trajectory realizing
the trajectory corresponding to a play. By assumption (1), we may assume that
j(tk) G X. We have to check only that F(t, y) = f(t, y, Uk, d(t)) satisfies the standard
Caratheodory conditions, a uniqueness of a solution condition, and an extendibility
condition. The standard Caratheodory conditions CC 1-CC 3 are obtained from CC
1- CC 3 by omitting control and disturbance parameters. We will check them for
F.

Original Caratheodory condition CC 1: According to CC 1, there is a set E of the
measure 0 of times such that for any t not in E, f(t, y, u*, d) is continuous in (y, d).
Fix such a t. Then f(t,y,Uk,d(t)) is continuous in y. That is, F(t,y) is continuous
in y for all t not in E. This verifies the original condition CC 1.

Original CC 2: We need only show that for every y, F(t, y) is measurable in t. By
CC 2, f(t,y,Uk,d) is measurable in (t, d) for every y. Since d{.) is measurable and
the composition of measurable functions is measurable, it follows that f(t, y, Uk,d(t))
is measurable in t for every y. This is the desired conclusion for F.

Original CC 3: The adapted CC 3 gives the function m(.) for / depending on
u. So we take the m corresponding to Uk and it provides the desired bound for F.

From the standard Caratheodory conditions for F, it follows that there exist
solutions of the equation y(t) — F(t, y(t)) for every t** > t*, x** € X in some
interval [t**,t** +p] where p > 0 and y(t**) = a;**, see [12], page 4.

The uniqueness of F easily follows from assumption (2). That is, choose the
function L(.) according to (2) which corresponds to Ufc. Then

\F(t,x) - F(t,y)\ = \f(t,x,uk,d(t)) - f(t,y,uk,d(t))\ < L(t) • \x-y\.

It then follows that there is a unique trajectory of F passing through every point
(t**,x**), see [12], page 5.

Finally we consider the extension of solutions of y = F(t,y). Since the standard
Caratheodory conditions are satisfied by F, according to [12], page 7, every solu-
tion can be extended on both sides of an initial condition to the boundary of any
closed and bounded domain of F. By condition (3), choose o to correspond Uk- Then
\F(t, y)\ < a • (1 4- \y\). From estimates based on this condition, it follows that the
states of any trajectory over a finite closed interval of time lie in a finite ball B whose
radius depends only on size of the interval. Using (1), we may choose for any t > t*,
the domain for F to be [t*,t] x B. This is a closed and bounded domain. From the
quoted theorem, it follows that a solution can be extended on the whole of \t*,i\.

This completes the demonstration of existence of the unique absolutely continu-
ous plant trajectory satisfying y(t) = f(t,y(t),Uk,d(t)) for all t > £*.

(B) There is an essential Control move at tk+x > £*• For a construction of a
plant trajectory up to tk+i corresponding to a play, we have to show that there is
the unique absolutely continuous plant trajectory satisfying y(t) = f(t,y(t),Uk,d(t))
for all t £ [£fc,tjt+i]. In this case, the proof is similar to the proof used for case (A).
□

We note that the conclusions of the theorem hold, in particular, for / independent
of time and if for all control values u, / is continuous in (x, d) and satisfies conditions
(l)-(3) of the theorem.

3.2 Continuous Input-Discrete Output Automata.

Next we want to consider the analogues of an automaton winning strategy for contin-
uous sensing games. For this purpose, we introduce continuous input-discrete output
automata to represent strategies for Control in continuous sensing games.

We adopt the following definition of the behavior of an ordinary automaton in
continuous time. First we define the notion of an automaton run on an input word
as a function of continuous time. Recall the ordinary definition of a run for a finite
state automaton. Let x = XQXX... xn be an input word. Then a run r = r(0), r(l),...
is the sequence of the automaton states satisfying

r(0) = Sin and
r(k + 1) = M(r(k),xk) for all k > 0

where Sj„ is the automaton initial state and M is its transition table.

Definition3. Suppose 0 < to < *i < ... < tn is an increasing sequence of times at
which the letters of an input word x = xo^i—^n are read. A function r : [0, oo) -¥ S
is a run of the automaton in continuous time if

{;
ift6[0,*o]

r(t) = { M(r(tk),xk) iin>k>0Ate (tk,tk+i]
M(r(tn),xn) if t€ (tn,oo)

Definition 3 says that system trajectories, viewed in the automaton state space,
are functions of time that are piecewise constant, continuous from the left at all
times.
Continuously Reading Automata

We now introduce a definition of the input-output automata used to model con-
trollers capable of continuously reading input that may continuously change. We
adopt the view that transitions are instantaneous and that state transitions are con-
tinuous from the left for automaton runs which correspond to a continuous stream
of input in time. We also restrict attention to the output of the automaton at a
discrete sequence of times.

Definition 4. A continuous-input discrete-output automaton consists of
1. A nonempty set of states S,
2. A nonempty input alphabet /,

3. An output alphabet J U {no action} where J D {no action} = 0,
4. A transition table M : S x J -> S,
5. An output function H : S x I -t J\J {no action},
6. An initial state Sj„.

For example, the controller described previously for water level translates into
the following continuous input-discrete output automaton. Its set of states is S =
{son, soff}, the initial state is Sj„ = son, the input alphabet is I = {y :y >0,y £
R}, and the alphabet of essential outputs is J = {pon,poff}. Here R is the set of
reals. The transition table and the output function are defined as follows:

,r, N f soff if y > g
M(son,y) = < ., ~ v ,a' [son iiy<g

,,, ,, x [son if y<h
M^Soff^ = [soff if y>h

H(son,y) = \SOff *y ^ v ' [no action if y < g

H(ff) = [son if y - h
\soJJ> V) | no action if y > ft

Definitions. Let TIME = [t*,oo), r(0) = sin. Suppose that x(.) maps TIME
into /. A run of a continuous-input discrete-output automaton corresponding to the
input stream x(.) is a function r : TIME -¥ S such that for every t £ TIME,
there is a duration r > 0 such that r(t') = M(s,x(t)) for every t' 6 (t,t + r]. The
output function of a continuous-input discrete-output automaton corresponding to
the input stream x(.) and a run r is the function h : TIME -t J U {no action}
defined by h(t) = H{r(t),x(t)).

Given a run r of a continuous-input discrete-output automaton A corresponding
to an input stream x(.), we define the set of switching times of r, SW(r), to be the
set of all t e TIME, such that M(r(t), x(t)) ^ r(t).

The difference between our continuous input-discrete output automaton and a
standard Mealy machine is that we allow the input to be an arbitrary function of
continuous time rather than a piecewise constant function of time which reflects input
at discrete instants only. We call the subset J of the automaton output alphabet,
the alphabet of essential outputs.

The definition of run for a continuous-input discrete-output automaton gives
rise to piecewise constant and continuous from the left state space functions which
represent the transitions. One of the reasons we adopt this definition is to avoid
the difficulties associated with the following automaton. Let 5 = {0,1}, s,n = 0,
I = [5,10], to = 1, and the automaton transition function be given by

M(0,5) = l
M(l,a;) = 0for x> 5.

Suppose the input function is x(t) = 5 • i. Then a transition should occur at
t = to- However if such a transition does occur, then at any later instant ti > to
where the new state is s = 1 another transition from the state s = 1 back to the
state s = 0 must occur. So at some ti > t\, the automaton is again in state s = 0.
This would imply that such transition times occur arbitrarily close to to- But this is
inconsistent with our intuition of an automaton transition while continuously reading
the input because there is no finite interval of the form (to, to + T] during which the
automaton is in a fixed state.

Definition 6. Assume that the automaton input alphabet J is a subset of a Eu-
clidean space. Call the sets Gs = {i ■ M(s,i) ^ s} the switching sets. We say that
a continuous input-discrete output automaton A has separated switching sets if
for every s, and s', the Euclidean distance between the sets Ga and Ga> is positive,
i.e. p{Ga,Ga<) > 0. Here p(Ga,GS') = inf{p(x,x'): x G Gs, x' G Ga>} where p(x,x')
is the usual Euclidean distance function.

Theorem 7. Consider a continuous input automaton with the following properties.

(a) Its set of states is finite.
(b) Its input alphabet is a subset of a Euclidean space E.
(c) Its switching sets of inputs are separated.
(d) Its switching sets of inputs are closed in the subset topology of E.

Then for every input function x{.) which is continuous over TIME = [t*, oo), there
is a unique run of the automaton over x(.). Moreover, the set SW(r) of switching
times during the run is discrete with no limit points in TIME.

Proof. Clearly, if G,in does not intersect the range of x(.), then r(t) = Sj„ for all
t G TIME. In this case, SW is empty and clearly the conclusions of the theorem are
satisfied. Suppose GSin does intersect the range of x(.) . Then x~1(GSin) ^ 0. This
set is also closed, since by assumption a;(.) is continuous and Gain is closed. Hence,
there is the least time to such that to G x~1(GSin). This is the first switching time.
We include to in SW. We associate the state so = Si„ with to.

Next suppose we have constructed an increasing sequence of switching times
io,...,tfc and the sequence of the corresponding states up to so,...,Sk at these
switching times. Consider Sk+i = M(s*,x(tfc)). Then either x~1(Gak+l) ("I (t*, oo) =
0, in which case r(t) = Sk+i for alii > tjb,ori~1(GgJt+1)n(t*;,oo) ^ 0. If i-1(G,fc+1)n
(tfc,oo) 7^ 0, then the set x~1(GSh+1) fl [tfc,oo) is closed. Moreover tj, cannot be a
limit point of x_1(Gr

g|,+1)n[t/fe,oo). That is, if t* were such a limit point, there would
be a sequence of points fj in x~1(Gah+1) converging to i*. But then, because of the
continuity of x(.), it must be that x(tk) is a limit point of a sequence x(t'j) of points
from GSh+1. This would contradict the separateness of Gah+1 from the switching set
Glh containing x(tk). Then we let tk+i be the least element of x~1(Gait+1) f) [tk, oo).

Thus by induction, we can define two sequences {tk} and {sk} such that for all
k,

tk+i ei 1(G,»+1)n(tfc><x>)

and

sjfc+i = M(sk,x(tk)).

Let SW be the set of elements in the first sequence. We claim that SW has no finite
limit points in TIME. Indeed suppose the sequence t* converges to t** > 0. Since
the set of states S is finite, there is a strictly positive number a = min{p{Gs,Ga>) ■
s ^ s',s,s' € S}. Choose e < a/2. By continuity of x, there exists an S > 0 such
that \t —1**\ < 6 implies \x(t) — x(t**)\ < e. Consider fco such that for every A; > ko,
|**+i -tk\ < 6. Then for all such k

\x(tk+i)-x(tk)\<2-e = a

However for all k, x(tk) € GSh and by the separateness of the switching sets, it
follows that

\x(tk+i) - x(tk)\ >a.

This is a contradiction and hence the set SW(r) has no finite limit points.
Since no transitions are possible at times between switching times, we have,

besides the constant run mentioned above, two more types of runs depending on
whether the set of switching times SW is finite or infinite. If SW is finite with last
switching time t„, then set

{«in if t = to
M{r(tk),x(tk)) Hn>k>0At€ (h,tk+1]
M(r(tn),x(tn)) iff €(t*,oo).

If SW is infinite, then set

r(t\-f
sin ift = t0

rw -\M(r(tk),x(tk)) if k > 0 At € (i*,i*+i]

The uniqueness of runs follows by induction on the switching times.
D

Next, we single out a property of a continuous-input discrete-output automaton
which has been proved in the previous proposition, but can be established with a
slightly weaker assumption. We will use this fact later in this section.

Propositions. Suppose that the premises of Theorem 7 hold, but the requirement
that the set of the automaton states be finite is omitted. Then at any state at which
the automaton is continuously reading a continuous function x : TIME -► /, either
the automaton remains in this state forever or there is a finite time t > 0 at which
a transition to a different automaton state takes place.

Definition 9. A run r of a continuous-input discrete-output automaton is realiz-
able if

(a) Both transitions to new states and essential outputs, occur only at discrete
times DT = {t0 <tu< ...}. That is, M(r(t),x(t)) = r(t) and H(r(t),x{t)) =
no action for t not in DT and r(tk) ^ r(tk+i) and H(r(tk), x(tk)) E J for k > 0.

(b) r(t) = M(r(tk),x(tk)) for every k > 0, t € (tk,tk+1}.
(c) inf({{tk+1-tk):k>0})>0.

If the sequence DT is finite and n is the last index k occurring in it, define tn+i = oo.
Then (a)-(c) of the definition apply to the interval (tn,tn+i)-

For example, the continuous input-discrete output automaton representing the
controller for the water pump given above satisfies the premises of the Proposition
7. Therefore it has runs over continuous water level trajectories y(.). Moreover, the
proposition tells us that these runs axe realizable.

Conditions (a) and (b) given in the definition of a realizable run reflect our
intuition of automaton transitions as described above. The definition synchronizes
transitions to new states with essential outputs. For automata with separated switch-
ing sets which satisfy the other conditions of Theorem 7, once this synchronization
is present, every run is automatically realizable.

Condition (c) prevents the set of transition times DT from having finite limit
points. We call (c) a realizability condition. The definition of realizable run here has
the same motivation as that of realizable time sequence in [24] and of "bounded
from below" sampling intervals for a controller in [36].

By taking I = X x [0, oo), we can make the automaton transition table and the
output function depend explicitly on time, M(s, x, t); H{s, x, t). We can then ensure
that the conditions (a)-(c) are satisfied for all runs of the automaton over any input
function x(.) by choosing a discrete set DT = {to <h < ...} satisfying (c), defining
M(s,x,t) = A(s,x) and H(s,x,t) = B(s,x) for t € DT, and defining M(s,x,t) = s
and H(s, x, t) = no action for t £ DT, where A and B are transition tables which
are not dependent on time.

3.3 Automata as Strategies

Next we explain how we can use a continuous-input discrete-output automaton as a
strategy for Control in our continuous sensing games. First choose an input alphabet
I = X and an alphabet of essential outputs J = C x [0, oo). Control uses the
continuous-input discrete-output automaton in the following way. Suppose t is the
current time and tk < t is the last time the automaton output was an essential
Control move. If y(t) is the current input, the automaton stays in its current state
s or shifts into another state according to its transition function M(s,y(t)) and
outputs the respective Control move according to its output function H(s,y(t)). If
at time t, there is a shift to another state, then the next essential Control move
occurs at t and tk+i = t. However the sequence of automaton states resulting may
not form a run, much less a realizable run, in the course of reading an input. We
call the automaton a realizable strategy for Control if whenever Control uses the
automaton as its strategy, then the resulting play produces a realizable run.

Since the set of plant states is usually a subset of a Euclidean space, it is natural to
consider automata with closed and separated switching sets as strategies for Control.
However even if Control use this type of automaton, it will not always produce plays
whose realizability can not be established by appealing to Theorem 7. The reason is
that the automaton output affects the future input and may result in the automaton

input not being a continuous function of time, so that Theorem 7 does not apply.
Such an automaton is given below.
Control strategies need not produce realizable runs

Consider the plant with a scalar control and disturbance:

y = d, for u = 0
y = — d, for u = 1
d G Z, d>0
y(0) = 0, and initially the control parameter is set to 0.

Consider the following automaton represented strategy for the player Control:

S = {0,1}
Sin =0
I = {y:y£R}
J = {u ;= 0, u := 1}. (Here we think of the essential control moves as orders
to set the control parameter to the indicated values.)

Let a > ß > 0 be given and let the transition table be defined by:

Here we assume The output function is defined by

H(0,y) = {U:=l *yla v ' [no action if y < a

H^ = {lo
= 0 if y > fi
action if y < ß

It is easy to see that there are exactly two switching sets, namely, Go = (a, oo)
and Gi = (—oo,/3). Thus since ß < a, these are separated switching sets. If this
strategy always produced realizable runs, then the corresponding plant trajectories
would be continuous. But we exhibit a plant trajectory from a game which uses
the automaton as a Control strategy and which produces a discontinuous plant
trajectory. Assume that the disturbance is initially d = 1 at time t = 0, and that
the disturbance doubles after each automaton state switch. We will get the first
switch at time a, the second will occur (a — ß)/2 seconds later, the third will occur
(a — /3)/22 after the second, and so on. The switch times tk are the sums of the first
k terms of this series. That is, they are tk = J2i=o 9L^'- tms sequence has a finite
limit point 2a. Hence there are times arbitrary close to 2a from the left where the
plant state is y = a and the plant state y = ß. Thus the plant trajectory is not
continuous at t = 2a.
Plants with Realizable Control Strategies

Next we define a class of plants together with a class of input-output automata
which are guaranteed to produce realizable strategies for Control.

Suppose the plant is modeled by a system of differential equations of the form

x = f(x,u,d),u €U,d€ D,x e X,

where u is a control parameter and d is disturbance parameter. Assume that U C
Em, D C Ek, and that X C En. We allow an additional source of nondeterminism in
the plant of the following sort. For each pair of parameters (u, u'), there is a delay in
resetting u to u', bounded by distance p(u, u'). Let t* and x* be the initial conditions
for the plant. Assume that we have only piecewise constant control functions, so that
we can identify control parameter value u with the constant control function u(t) = u
for all t > t', where t' is a resetting time of a previous control parameter value to u.

Consider the following strategy A for Control in the continuous sensing game
in which the plant state x is being sensed by Control. Let A be a continuous-input
discrete-output automaton such that:

1. Its state space S is finite.
2. Its input alphabet is I = X.
3. Its alphabet of essential control moves is J = U x [0, oo).
4. Its transition table M satisfies the condition of separateness of switching sets.
5. The switching set for the initial state contains the initial plant state x* € GSi„ ■
6. The automaton output function H(s, x) produces an essential output only when

x is in the switching set Ga, otherwise H(s,x) = no action.

In particular, H(sin,x*) = (u, £*) for some u € U so that the first output to be
produced by the automaton is an essential move.

Theorem 10. Suppose that the plant is modeled by

y = f(t,y,u,d)

as described above. Suppose that f satisfies the Caratheodory conditions CC 1, CC
2, and CC 3, where we assume that there is a fixed function m(.) for f, inde-
pendent of the value u of the control parameter for condition CC3. Assume that
the automaton A described above has closed separated switching sets. Then for every
play fj, consistent with Control following the strategy A, the resulting automaton state
function is a realizable run of A.

Proof. We show first that the use of A by the player Control results in the
production of runs of A. By the conditions in the paragraph preceding the theorem,
the first control move according to A is essential. The control laws here are constant
functions. Suppose there are no more essential control moves. Since the control laws
here are constant functions, an essential move creates continuous plant trajectories
because of the three Caratheodory conditions satisfied by the plant model. It then
follows by Theorem 10 that the corresponding run is realizable.

Now suppose a finite number of essential control moves were made from the
beginning of the play. Consider a time t** at which the last essential control move
was made. That is, if s* is the state of A at time <**, then the automaton input x**
at time t** is in the switching set G,*. We may assume that the interaction of the
automaton A and the plant has produced the plant trajectory 7 up to time t** and

j(t**) = x**. In other words j(t**) 6 G8*. We wish to show that there is a positive
T > 0 such that there is no essential automaton outputs and transitions to new
states in the interval (t**,t** + r). It is easy to see that, even with the finite delay
corresponding to resetting the control according to (u,t**) = H(s*,x**), the input
to the automaton is a continuous plant trajectory because the function / satisfies
the Caratheodory conditions CC 1, CC 2, and CC 3. It follows from Proposition
4.3 that there are two alternatives. The first alternative is that the automaton stays
forever in this state. This produces a valid realizable run and play with t** being
the last essential Control move. The second alternative is that there is r > 0 such
that the next essential move occurs at t** + r. this means that there are no essential
outputs or transitions to new states in (t**,t** + r), since these occur at the same
time according to the definition of A, and the transitions to new states do not occur
in this alternative for such an interval.

It follows that when Control uses A in the game, the set of times at which
essential moves are made is a discrete set. We let DT(fj) denote this set for the play
fi. Next fix a play /J, and consider an initial sequence {tk ■ k > 0} of DT = DT(fj)
that begins with the time of the first essential control move. Clearly, every finite
initial segment of this sequence determines a position in the game for which there
is a corresponding continuous plant trajectory. Suppose that q is a limit point of
this sequence. Due to assumption CC 3, we get the following estimate for any plant
trajectory 7:

\l{t')-l{t)\<ft m{t)dt.

Since the integral is absolutely continuous, it follows that the

limk-^oo\l{h+i) - l{h)\ = 0.

By the argument above, it follows that for every k, 7(4) € Gtk, where s* is the
automaton state at which the transition occurs at the switch time tk. Moreover, the
sets GSk+1 and G8k are distinct since the states sjt+i and s* are distinct. The fact
that the above limit is 0 and the fact that there are only a finite number of switching
sets would imply that for some pair of states s and s', the distance between Ga and
Gsi is 0. But this contradicts our assumption that there is nonzero distance between
the switching sets. Thus the sequence {tk} has no finite limit points. Since the set
of switching instants DT is the set of times of essential Control moves and this set
has no finite limit points, the corresponding play is realizable. O

We note that for the water level monitor problem describe above, the bound
function for the Caratheodory condition CC 3* is m(t) = max{a, b} ■ t. Thus the
plays produced by the suggested automaton controller are all realizable.

4 From Continuous to Discrete Sensing Games

In this section we fully analyze the water pump example. We start by explicitly
constructing a continuous-input discrete-output automaton A(g, h) for a pair of pa-
rameters g > h as described in the previous section. By Theorem 10, we know that
if Control uses A(g, h) for its strategy in the continuous sensing game for the water

level monitor, then it will always produce realizable runs for A(g,h). We shall show
that for any desired water levels, u < v, we can pick (g, h) in such a way that if
Control uses the automata A(g, h) for its strategy in the continuous sensing game,
then Control will win in the sense that we will guarantee that at all times t, the
water level y(t) will satisfy u < y(t) < v assuming that u < j/(0) < v. Then we
shall show how we can use the continuous-input discrete-output automaton A(g, h)
to design a finite automaton which will control the plant, that is, the water tank
plus pump, to meet the desired performance specification. Finally, we shall show
that we can explicitly extract Kohn-Nerode small topologies which will verify the
controllability and observability of our discrete control strategy.
The (g,h)-Automaton A(g, h)

With any pair (g, h) of positive numbers with g > h we associate a (g, h)-
automaton A(g,h) with continuous input alphabet and a three letter output al-
phabet. (This is essentially the same automaton that was described in the previous
section.)

1. The input alphabet consists of the numbers in interval M of possible water levels
y-

2. The two automaton states are son, soff.
3. The three letter output alphabet is pon,poff,no action.

The transition table and output function of this automaton are defined as follows.

an \ f so// if« > a M(son,y) = { .t Z v "' [son iiy<g

,,, ,, x (son ify< M(soff,y) = {soff.iy>

H(son,y) = i soff if y>g
no action if y < g

f.y) = {;
rrf rf \) son if y < h
H(s°ff>y) = {noacti(mify>h

The the switching sets for A(g,h) are Gson = [g, oo) and Gg0// = (—oo,/i].
We can thus guarantee that A(g, h) has separated switching sets if we impose the
requirement that g > h.

Theorem 11. If parameters g and h in the continuous sensing game for the water
level monitor with maximum delay d satisfy the conditions:

(l)g>h, (2) g + a-d<v,(3) h-b-d>u,
(4)h-b-d<y(0)<g,(5)^>d, (6) ^ > d, {Z)

then the strategy A(g, h) is a winning strategy for the player Control in any game
where the initial state of Control is son and the initial state of the pump is pan.

Proof Suppose (I = YQ, ZQ, Y\, Z\, ... is a play consistent with A. We have to show
two things. First we must show that the strategy induced by A(g, h) is applicable at
every position of Control in this play. That is, we must show that if Control using
this strategy, then he never gets stuck in the sense that he is unable to make a move
according to the strategy. This is the perpetual property [48], [38]. Second we must
show that A(g, h) induces a winning strategy for Control, i.e. that the water level
trajectory j/(.) corresponding to any play consistent with the game initial condition
and the strategy A(g, h) has the property that for all times t > 0, u < y(t) < v. We
show both properties by induction on the length of a position in the play.

The initial position of the play is p = (pan, 0) and the initial trajectory of the
plant is just (0, y(0)). That is, the initial control sent to the plant is that the pump
should be on. Now since j/(0) satisfies v < h — b ■ d < y(0) < g < v, we see that the
initial trajectory is within acceptable bounds.

Consider the first block of plant moves which is specified by its corresponding
trajectory YQ. By our assumptions, we have that for all t,

0 < a' < Y0(t) < a.

Thus Yo will be a strictly increasing function so that there will be some time *i > 0
such that Yo(ti) = g. It is easy to see that h < (g — y(0))/a'

Thus at time <i, Control issues the order that the pump should be turned off
and switches to state soff. Thus ZQ = (poff,ti).

Now consider the next block of plant moves which is specified by its corresponding
trajectory Y\. Because of the delay in switching from the pump being on to the pump
being off after the control order to turn the pump off has been issued, there is some
0 < T\ < d such that the pump remains on between time <i and time *i + T\ and
then the pump turns off. Thus the corresponding trajectory Y\ satisfies

0 < o! < Yi(t) < a if *i < t < h + TI

0 > -V > Yi(t) >-b iit>h+Ti

It is then easy to see that the trajectory Y\ must reach its maximum at time
t = 11 + Ti and that this maximum value is bounded by g + CLT\ < g + ad < V.

After time t\ + T\ , Y\ is strictly decreasing so that there must be some time <2 > h
such that Yi(i2) = h. It is easy to see that d < ^ < t2 - h < g+°f ~h. Since
h - h > d it follows that the state the pump will be soff at time t^. Thus at
time £2, Control issues a order that the pump be turned on and switches to state
son. Thus z\ = (pan, £2). It then easily follows that the values of the trajectory Y\
between times t = t\ and t = t2 takes on its maximum value at time t\ + T\ and its
minimum value at time t2 where Yi{t2) = h. Thus the values of Y\{t) lie between h
and g + ad and hence meets our performance specifications.

Now consider the next block of plant moves which is specified by its corresponding
trajectory Y2. Again, because of the delay in switching from the pump being off to
the pump being on after the control order to turn the pump on has been issued,
there is some 0 < r2 < d such that the pump remains off between time t2 and time
t2 + T2 and then the pump turns on. Thus the corresponding trajectory Y2 satisfies

0 > -b' > Y2(t) >-b tit2<t<t2+T2

0 < o' < Y2(t) <a tft>t2+T2

It is then easy to see that the trajectory Y2 must reach its minimum at time t = t2+r2

and that this minimum value is bounded below by h — ar2 > h — bd > u. After time
h + T"2> Y2 is strictly increasing so that there must be some time £3 > t2 such that
*2(*3) = 9- It is easy to see that d < ^ < t3 - t2 < 3-h+bd, Since t3 - t2 > d it
follows that the state the pump will be son at time £3. At time £3, Control issues a
order that the pump be turned off and switches to state soff. Thus z2 = (poff, £3).
It then easily follows that the values of the trajectory Y2 between times t = t2 and
t = t% takes on its minimum value at time t2 + r2 and its maximum value at time £3
where I^fe) = 9- Thus the values of Y2(t) lie between h — bd and g and hence meet
our performance specifications.

Thus the behavior of the system between the position ending in z\ and the
position ending in zz meets the performance specification and the requirement that
Control can follow the strategy determined by A(g, h). Note that at time t%, the
water level is g and the pump is on and at time £3 the water and the pump is on.
It is then straightforward to prove by induction that at time t2n+i the water level
will be g and the pump will be on and that exactly the same analysis will apply to
the behavior of the system between the position ending in z2n+i and the position
ending in z2n+3- Hence it follows that the strategy for Control induced by A(g, h) is
a winning strategy for Control as claimed. Ü

It should be clear that in the statement of Theorem 11 we can replace the as-
sumption that the pump is initially on and u < y(0) < g by the assumption that the
pump is initially off and h < y(0) < g + a- d and the conclusion of the Proposition
will continue to hold.

4.1 The (g,h)— Automata for Discrete Sampling and Measurement
Errors

We now modify our continuous sensing game for the water level monitor in two ways.
First we shall assume that Control, instead of continuously sensing the plant state,
senses the plants state only at discrete times to <h <t2 < ..., where there is some
positive A > 0 such that tk+i — tk > A for all k > 0.

Second, we shall assume that Control is not able to exactly measure the plant
state, but only that Control can measure the plant state within some error e. Our
goal is to specify a continuous-input discrete-ouput automaton strategy for Control
in such a game and the sequence of sampling times to < h < t2 < ... so that if
Control measures the plants state at the times to < h < t2 < ... with an error of
no more than e and follows the strategy induced by the continuous-input discrete-
ouput automaton, then Control will ensure that the plant meets the performance
specifications.

In this case, we shall assume that to = 0 and that t* = kA for all k > 0 so
that we are sampling every A seconds, where A > d and d is the maximum delay
that can occur between the time at which Control issues a order to the pump to
turn off or on and the time the pump actually achieves the state required by the
order. Moreover, we shall continue to use the automaton A(g, h) for the strategy for
Control. Thus the behavior of the system is the following:
A. Suppose that the automaton is in state son and receives as input measurement
m. Then, instantaneously,

1. if m > g, then the automaton outputs poff and also shifts its state to soff,
and

2. if m < g, then the automaton remains in state pon, and outputs no action.

B. Suppose that the automaton is in state soff and and receives input measurement
m. Then, instantaneously,

1. if m < h, then the automaton outputs pan and shifts to state son, and
2. if y > h, then the automaton remains in state soff and outputs no action.

Thus our problem is find A and the parameter g and h to ensure that the water
level y(t) stays within the desired bounds, i.e. that for all t, u < y(t) < v. First of
all, since we pick A > d, we will be guaranteed that the plant and automaton states
correspond to each other at the end of each sampling interval. That is, if initially
the plant state and the initial state of A{g, h) are such that if the initial state of
A(g, h) is soff, then the pump is off and if initial state of A(g, h) is son, then the
pump is on, then at some time before the end of each sampling interval the state of
A(g, h) the pump will correspond to each other.

It is then quite easy to derive the necessary conditions on the parameters g and
h to guarantee that the control automaton A(g, h) provides a winning strategy for
Control in our modified game. That is, all we do have to do is analyze the plant
trajectories for given input measurement and states of A(g, h). We consider the
following cases.

Case 1 Suppose that the plants state is son and at time tk, Control receives
a measurement mk < g. Now by assumption, if the actual water level at time tk is
y(tk), then

mk-e< y{tk) <mk + e.

Assume also that the pump is on at time tk so that in this case the automaton
remains in state son and issues the order no action and the pump remains on for
the next A seconds. Then since the plant trajectory j/(.) between tk and tk+\ = tk+A
must satisfy

0 < a' < y(t) < a,

it is easy to see that y(t) is a strictly increasing function in this interval and that

y(tk+i) < y(tk) + aA < mk + aA + e < g + aA + e.

Now if we find that the measurement received at time tk+i, mk+i, is still less than
g, then of course the automaton will continue to be in state son and issue the order
no action so that the pump will remain on, the plant trajectory j/(.) between tk+i
and tk+2 will be strictly increasing, and 2/(^+2) < g + aA + e. We will continue on
this way until we find the least I > k such that the measurement received at time ti
will be greater than or equal to g. By our analysis, the actual plant state y(U) will
bounded by g + aA + e. At that point, the automaton will issue the order for the
pump to be turned off and switch to state soff. What happens to the trajectory y(t)
between times ti and tj+i = ti + A? It is easy to see that our analysis of Theorem 11
now applies. That is, there will be some rj < d < A such that the trajectory satisfies

0<a'<y{t)<a ifti<t<ti + Ti
0 > -b' > y(t) >-b iiti + n<t< tt+1.

It is then easy to see that the trajectory y(t) in the interval [*/, i/+i] must reach
its maximum at time t = U + TI and that this maximum value is bounded by
y(ti) + a,T\ < y(ti) + ad < g + a A + e + ad. Then after time ti + TI, y(t) is strictly
decreasing. It is now easy to see that if we pick g so that

g + ad + aA + e <v,

then we will ensure that following the A(g, h) strategy will ensure that the water
level never becomes greater than v. There is also a lower bound which is imposed on
g which comes from the fact that the minimum value of y(t) in the interval [i;,t/+i]
must be greater than or equal to u. Since we are assuming that mj > g, we know
that y(ti) > g - e. If we assume that there is no delay in turning the pump off,
then y(t) could be strictly decreasing in the interval. It is then easy to see that in
such a situation, J/(*J+I) could be as small as g - e — bA. Moreover it could be that
g — e — bA — e <h so that mj+i < h. In that situation, the pump will be off and
our controller would tell the pump to turn on. However there could be a maximum
delay of time d before the pump turns on and the the water level once again starts
to increase. Thus there could be a further drop of -bd in the water level during this
delay so that the water level could become as small as g — e — bA — bd. Thus we
must also assume that g — bd — bA — e > u or equivalently that u — bd + bA + e < g.
In case 2, we will deal with the case when mj+i > h.

Case 2. Suppose that the plants state is soff and at time £*, Control receives
a measurement m* > h. Again the actual water level y{tk) satisfies

mk-e< y(tk) <mk+e.

Assume also that the pump is off at time tk so that in this case the automaton
remains in state soff and issues the order no action and the pump remains off for
the next A seconds. Then since the plant trajectory y(.) between tk and tk+i = tk+A
must satisfy

0 > -b' > y(t) > -b,

it is easy to see that y(t) is a strictly decreasing function in this interval and that

V(tk+i) > y(tk) -bA>mk-bA-e>h-bA-e.

Now if we find that the measurement received at time tk+i, mk+i, is still greater
than h, then of course the automaton will continue to be in state soff and issue the
order no action so that the pump will remain off, the plant trajectory y(.) between
tk+i and tfc+2 will be strictly decreasing, and y(tk+2) >h — bA — e. We will continue
on this way until we find the least I > k such that the measurement received at time
U will be less than or equal to h. By our analysis, the actual plant state y(ti) will
bounded below by h — bA — e. At that point, the automaton will issue the order
for the pump to be turned on and switch to state son. Again use our analysis of
Theorem 11 to analyze what happens to the trajectory y(t) between times ti and
ti+i = ti + A. That is, there will be some T/ < d < A such that the trajectory
satisfies

0 > -b' > y(t) >-b ifti<t<ti+Ti
0 < a' < y(t) <a if ti + n < t < ij+i.

It is then easy to see that the trajectory y(t) in the interval [t/,ij+1] must reach
its minimum at time t = tj + 77 and that this minimum value is bounded below by
y(ti) — bri > y(ti) -bd > h - bA - e — bd. Then after time ti + TJ, y(t) is strictly
increasing. It is now easy to see that if we pick h so that

h — bd — bA — e > u,

then we will ensure that following the A(g, h) strategy will ensure that the water
level never becomes less than u. There is also upper bound which is imposed on h
which comes from the fact that the maximum value of y(t) in the interval [ij,tj+i]
must be less than or equal to v. Since we are assuming that mi < h, we know that
y(ti) < h + e. If we assume that there is no delay in turning the pump on, then
y(t) could be strictly increasing in the interval. It is then easy to see that in such a
situation, j/(tj+i) could be as large as h+e+baA. Note that the case when mj+i < g
was handled in Case 1. However it could be that h+e+aA+e > g so that mj+i > g.
In that situation, the pump will be on and our controller would tell the pump to turn
off. However there could be a maximum delay of time d before the pump turns off
and the the water level once again starts to decrease. Thus there could be a further
rise of ad in the water level during this delay so that the water level could become
as large as h + e + a A + ad. Thus we must also assume that h + ad + a A + e < v or
equivalently that h <v — ad — aA — e.

Below is the proposition asserting the conditions for correctness of the A(g, h)
control automaton.

Theorem 12. Suppose in the discrete sampling game for the water level monitor, we
have a maximum delay of d for switching plant states, we are given a finite sampling
time A > d > 0 and a measurement error bound e > 0. Choose the numbers h < g
so that

u + bd+bA + e < g,h <v — ad — aA — e.

Suppose that the initial water level is between h + e and v — a • d and the pump
is on or the initial water level is between u + b- d and g — e and the pump is off.
Suppose that initially the pump and the control automaton are both in the "on" state
or both in the "off" state. With the A(g,h)-controller introduced above, the water
level satisfies the performance specification that u < y(t) <v at all times t>0.

Proof By using the analysis of Case 1 and Case 2 above, one can easily prove by
induction k that if Control follows the A(g, h) strategy in our modified game, then
in each interval [**,<*+!], the trajectory of the plant y(t) will always satisfy that
u < J/(*) < v- We leave the details to the reader. D

We note that the inequalities on g and h in Theorem 12 automatically impose
the following upper bound on the size of the sampling interval A:

. _ v — u + d(a + b) — 2e
A < ^-; .

a + b

4.2 Topological Finite Automata from Open Covers

In appendix II of [24], there is a general method which, given a hybrid system whose
performance specification is autonomous, extracts a finite automaton which which
can be used to guarantee that the hybrid system will meet its performance speci-
fications as well as to extract small topologies which guarantee the stability of the
system. Our goal in this section is to follow appendix II of [24] and construct a finite
open cover yielding a finite control automaton and small topologies for our water
level monitor example which guarantee that the water level always stay within speci-
fied bounds. Here, when we say that the performance specification is autonomous, we
mean the following. We assume that the plant is modeled by a differential equation

y = f(y,u,d)

where u is a control parameter and d is a disturbance parameter. Then in each
interval of time A = [to>*i] and any given plant state y that lies within a certain set
of acceptable values, we want to find a control law u{.) such that if we use the control
law u(t) to determine the plant trajectory, then for any acceptable disturbance d{t),
our plant trajectory should meet the required performance specification. That is,
any function y(t) such that y(to) = y and y(t) = f(y(t),u(t), d(t)) for all t € A must
meet our performance specification. We assume that our choice of suitable control
functions u(t) for any interval A depends only on the plant state x and the internal
state of the controller but not on the time t which is the start of the interval.
In this situation, the problem of meeting performance specification is equivalent
to determining a set Q of "acceptable "pairs (x,u(t)) of plants states and control
functions. That is, each pair represents a plant trajectory which begins at the plant
state of the pair and is guided by the control law of the pair which satisfies the our
performance specifications over the sampling interval A. Note that in this situation,
the control law u(t) is a function of time over the sampling interval that takes values
in the range of values of the control parameter.

For example, the range of the control parameter for the water pump-tank sys-
tem is the set of orders for the pump or equivalently the set of states of the pump
{1 = 'pon',0 = 'poff'} and every control law is a constant function over the sam-
pling interval with the range being the pump states. In what follows, we adapt the
definition of the set of pairs Q to reflect the presence of possible delays in switching
the pump states. Thus for the water tank and pump example, we let Q consist of
the pairs such that for any admissible delay in switching to a new pump state as
directed by Control in the sampling interval A, the the water level which correspond
to the plant trajectory stays within our required bounds.

In the general setting for autonomous performance specification, the first stage
of finding a control automaton in the small topologies satisfying the specification is
to find a control function.

Definition 13. A feedback control function if is a map that assigns to each
pair of a plant state x reached at the end of a sampling interval A and the current
control law u used in A, a control law u' such that the corresponding plant trajectory
over the next sampling interval A' satisfies the performance specification over that
interval.

A useful model to keep in mind is to think of the control u(t) as being deter-
mined by a physical controller. Thus the automaton communicates with the physical
controller by setting the state of the physical controller su which has the effect of
imposing the control u(t) for the next sampling interval. In such a situation, we
can identify the control laws with the states of the physical controller. For example,
in the case of the water pump and tank example where the control functions are
piecewise constant, we may represent u its value which is either pon or poff. For
the rest of this section, we shall use this model so that instead of talking about the
current control law of the sampling interval, we will talk about the current state of
the physical controller, etc.

Definition 14. The automaton A(H) associated with a control function H is de-
fined as follows.

1. Its set of states is the set of states of the physical controller K. (In the more
general language, K would be the set of possible control laws which occur in
pairs in Q.)

2. Its input alphabet is the set of plant states U = PS.
3. Its output function H(u, k) is the feedback control function.
4. Its transition table M(u, k) models the switching of control laws output by the

controller, i.e. M(u, k) = H(u, k) for all u G U and k G K.

Next we want to isolate some properties of the automaton A(H) or equivalently
the feedback control function H which will guarantee that we can perpetually apply
our control strategy.

Definition 15. Say that the automaton A(H) associated with a feedback control
function H is correct with respect a performance specification and a region
B C PS x K if the following holds. For any pair a = (y, k) G B and for any
admissible disturbance d(t), any trajectory beginning from y and guided by the
control corresponding to k during the delay for switching to new state of the physical
controller H(y, k) and by the control H(y, k) after the delay satisfies the performance
specifications and ends up in B at the end of the sampling interval. Here "ends up
in B" means that if j/i is plant state corresponding the trajectory at the end of the
sampling interval, then (yi,H(y,k)) G B.

Definition 16. Suppose that there is a region B in the domain of the feedback con-
trol function H such that for any pair (y, k) G B and for any admissible disturbance
d(t), any trajectory beginning from y and guided by the control corresponding to k
during the delay for switching to new state of the physical controller H(y, k) and
by the control control H(y, k) after the delay satisfies the performance specifications
and ends up in B at the end of the sampling interval. Then we call such a control
function a guiding feedback control function relative to B.

The definitions above can easily be extended to apply to the case when the control
function is set-valued as introduced in appendix II of [24]. The idea of a set-valued
feedback control function is that one computes a set of controls or in our case a set
of physical controller states from a pair consisting of a plant state and a physical

controller state and then selects from that set one control or physical controller state
which will be used to determine the plant trajectory in the next sampling interval
A The set of control functions or physical controller states that we compute should
be such that for every control function or physical controller state that could have
been chosen from the set and every admissible disturbance, the corresponding plant
trajectory always satisfies the performance specifications.

Set-valued feedback control functions arise naturally in our context. Consider a
map H from the pairs (m, k) ((measurement, physical controller state)) into the set of
states of the physical controller. If we take the measurements as inputs to the control
automaton and identify the map H with the control automaton output function,
we of course have an ordinary function as opposed to a set-valued one. However
suppose that we assume that a measurement can be any value that approximates a
plant state within some error bound. That is, we view a measurement as a set-valued
function over plant states from which an nondeterministic choice of an element from
a set is made. For example, suppose that the map above is H(m, k), where m is a
measurement, and fc is a physical controller state. Then the corresponding set-valued
feedback control function is G(y,k) = {H(m, k) : \m — y\ < e}. Here e > 0 is the
measurement error bound.

In appendix II [24], the graph of G is assumed closed. But our G is not closed.
So we take the closure of the graph of G and consider a corresponding set-valued
function G' whose graph is that closure. So our control function will be G'. The
topologies that are used in the construction of G' are the natural Hausdorff topologies
on the plant state space and on the space of states of the physical controller following
[24]. The fact that the topological spaces are Hausdorff means that if the state space
K of the physical controller is finite, then the K must have the discrete topology
since the only Huassdorff topology on a finite set is the discrete topology.

It is also important for applying the methodology of appendix II that the domain
of the feedback control function be a subset of the set Q. This is true of the graph
of G but not necessarily for the closure of G because the domain of the closure of G
may include boundary points of Q which are not in Q. In the case we consider, the
closure of G will in fact lie entirely in Q.

Now let us go back to our water level monitor example. Let K = {pon,poff} be
the range of control values or equivalently the states of the pump. Let the variable
k range over the set K. Here, the map H(m, k) is defined by

^^ ' ' ~ \ pan otherwise

„, ,, . (pan if y<h
H{P°ff^ = {poff otherwise

A water level y is taken from the set [u,v], which carries the natural Euclidean
topology. There is only one Hausdorff topology on the set K, the discrete topology.

To construct the function G note that for each control automaton state the func-
tion H is continuous except at one point in the range of y. The point of discontinuity
for H is either g or h at respective automaton states on, off. It follows that if y
is separated from, say g, by more than the error bound e, then the function has a
singleton set as a value. One can see that at points g — e,g + e,h — e,h + e, the value

of G is still a singleton. At points near to g, ft by less than e, the value of G is K
since H has a different value to the right of g than to the left of g. Thus

{{port} if y <g-e
K iig-e<y <g + e
{poff} if y > g + e

{{pon} if y < ft — e
K if h-e<y<h + e
{poff} if y > ft + e

Now consider the closure G' of the graph of G. Here we use the same letter for the
set-valued function and for its graph. Here is the resulting closure.

{{pon} ify<g-e
K ifg-e<y<g + e
{poff} if y>g + e

{{pon} if y < ft — e
K i£h-e<y<h + e
{poff} if y > ft + e

Note that the definition of the function G also makes sense for exact measurements
(e = 0), but in that case the corresponding function G' is multi-valued only at the
points of discontinuity (g,on), (h,off) of H. This nondeterminacy makes clear the
arbitrary nature of the choice of a strict or non strict inequality in the definition of
H. That is, we obtain four functions which are variants of H, differing from H only
in having non-strict inequalities in the definition. All give rise to the same G'.

We distinguish between three slightly different automata, Aut\, Auti, and Autz,
which depend on our pair of parameters g and ft. For all three automaton, the
set of states is {pon,poff}, the input alphabet is the set of water levels and the
output alphabet the same as the set of states. Thus we need only define their output
functions Hi(y, k) and their transition tables Mi(y, k). For the automaton Aut\{g, ft),
the output function H\(y, k) and the transition table M\{y, k) are both equal to the
function H(y,k) defined above. If we think of this automaton as a strategy for
Control in the discrete sampling game with error measurements, then Auti gives
essentially the same strategy as the automaton A{g,h) described in the previous
section. The only difference between the two automaton is when in the state pon
when y < g, Auti(g,h) outputs pon while A(g, ft) outputs no action. However we
regard both of these instructions to a pump which is on to be the same, i.e. they both
keep the pump on. Similarly when in the state poff when y > ft, Aut\ (g, h) outputs
poff while A{g, ft) outputs no action. Again we regard both of these instructions
to a pump which is off to be the same, i.e. they both keep the pump off. Thus
by Proposition 12 Aut\ is a winning strategy for Control in the discrete sampling
game with error measurements. Now as observed above, if we think about the action
of the strategy as a function of plant states instead of on measurements where
we assume that the absolute value of the difference between the measurement and
the actual plant state is no more than e, then the transition table and the output

function axe nondeterministic and are give by the function G defined above. Thus
we define a second automaton Aut^g, h) whose transition table and output function
are given by G, i.e. for all (y, k), M2(y, k) = #2(1/, k) = G(y, k). Of course Aui2 is a
nondeterministic automaton and the output function is set valued. We shall assume
that the automaton operates as follows. If Auti is in state s and is reading input y
and goes to state s' at its next step so that s' € M2(s,y), then the output of the
automaton in that circumstance is also s'. That is, our definitions ensure that for the
pair (s,y), the possible new states and the possible outputs come from the same set
since M2(s,y) = #2(3,2/). We are thus making the additional assumption that such
choices are coordinated for any (s, y). In this way, we can use Auti as a strategy for
Control since our assumption will ensure that the internal state of the automaton
Aut\ and the state of pump are always coordinated at the end of sampling intervals
if they start out coordinated. If we think of Auti as a strategy for Control in the
discrete sampling game without errors in measurements, i.e. in the discrete sampling
game where the error bound e = 0, then this strategy for Control will produce exactly
the same set of runs with respect to plant states as the strategy Aut\ produces in the
discrete sampling game with error measurements. Hence Aufa is a winning strategy
for control in the discrete sampling games without error measurements. Finally we
consider yet another nondeterministic automaton Aut$ whose transition table and
output function axe given by G' instead of G. Again we assume that Aut$ operates
so that if Autz is in state s and is reading input y and goes to state s' £ M3(s,y) at
its next step, then the output of the automaton in that circumstance is also s'.
Remark

The differences between the control strategy Aut\ in our discrete sampling game
with errors in measurements bounded by e and the control strategy Auti in our dis-
crete sampling game without error measurements can be explained in terms whether
we consider the analog to digital converter as part of the plant or whether we want to
consider the analog to digital converter as part of the digital controller. That is, if we
consider the analog to digital converter as part of the plant, then it is natural to as-
sume that the digital controller receives only plant measurements and this situation
is most naturally modeled as a discrete sampling game with errors in measurements
where the control automaton is deterministic. However, if we consider the analog
to digital converter as part of the digital controller, then the most natural way to
model this situation is that we have a discrete sampling game without errors in mea-
surements and that the control automaton behaves in a nondeterministic manner as
described by Aut-z. Thus our choice of using Auti in a discrete sampling game with
errors in measurements or of using Aut2 in a discrete sampling game without errors
in measurements comes down to the choice of where in Figure 1 we wish to place
the analog to digital converter, i.e on the digital side or on the analog side.

Our next proposition states that Aut^ is also a winning strategy for Control in
the discrete sampling games without error measurements.

Theorem 17. Suppose in the discrete sampling game without errors in measure-
ments for the water level monitor, we use finite sampling intervals of size A and
that the maximum delay d for switching to new plant state is such that A > d > 0.
In addition assume e > 0 and that g and h satisfy

1. g <v — a-d — a-A — e;

2. g — e>h + e;
3. h>u + b-d + b-A + e.

Suppose that the initial water level is between h+e and v — a-d and the pump is
on, or the initial water level is between u+b-d and g—e and the pump is off. Suppose
that initially the pump and any of the two control automata, Aut2 or Aut3, are both
in the on state or both in the off state. Then Aut2 and Aut^ are winning strategies
for Control in such discrete sampling games without errors in measurements for the
water level monitor.

Proof The proof of Theorem 12 that Autl is a winning strategy for Control in
discrete sampling games with errors in measurement bounded by e can be is easily
adapted to prove that that either Aut2 or Aut3 is a winning strategy for Control
in the discrete sampling games without errors in measurement. The proof is by
induction on the length of positions as before. We leave the details to the reader, ü

The content of Theorem 17 can be restated as the following property of the
feedback control function G'. Suppose the water level y is between h + e and v-a-d
and the pump is on or y is between u + b-d and g — e and the pump is off. Suppose
that the next control law is chosen from the set G'(y,k), where k is the state of
the pump as specified above at the beginning of the sampling interval A. Then the
water level lies in the interval [u,v] over the next sampling interval. Thus G' can
indeed be used as a feedback control function for the water level and pump states
in the region

A = [h + e,v -a-d]x {on} U [u + b■ d,g - e] x {off}.

Moreover, the water level and the state of the pump at the end of the sampling
interval satisfy the same assumptions that are satisfied by this data at the beginning
of the sampling interval. That is, the trajectories that have begun in A will end in
A at the end of a sampling interval if they are guided by a control law determined
by the set-valued control function. According to our earlier definition, the feedback
control function G' restricted to A is a guiding feedback control function.
Constructing Open Covers

We now consider an open cover of the graph of G' restricted to the region A.
Our goal is to construct a finite automaton with small topologies approximating
G'. We presented A above as a disjoint union of two open and closed (clopen) sets.
Correspondingly, the graph of G' is a disjoint union of clopen sets. It is sufficient
to cover each of the clopen sets independently. Choose e > 0 so small that the sets
below are subsets of the graph of G'. To visualize the regions below more clearly,
recall that we have the following the inequalities:

h — e < g — e < g + e <v — a- d and

u + b-d <h — e <h + e < g — e.

Here is the open cover for the first clopen set:

Vi = [h + e, g - e + e) x {on} x {on},
V2 = {9 - e - e,g + e + e) x {on} x K,
V3(g + e-e,v-a-d]x {on} x {off}.

Similarly here is an open cover for the second clopen set:

V4 = [u + b • d, h - e + e) x {off} x {on},
V5 = (h - e - e, h + e + e) x {off} x if,
V6 = (h + e - e, g + e] x {off} x {off}.

Let J/i, f/2, U3, U4, U5, Uß be the leftmost components of V\, V2, V3, V4, V5, V5 re-
spectively. The input alphabet of the small topologies automaton will consist of the
two disjoint lists. Namely the join irreducibles of the lattice under inclusion gener-
ated by U\, U2 and U3 which consist of

Ui,U2,U3,Uinu3,U2nu3

and the set of join irreducibles of the lattice under inclusion generated by U4, C/5 and
Ue which consists of

UA,Ut,Ufi,UAnUs,u6nUt.

In the notation of [24], the sets Vu i = 1,..., 6, correspond to an open cover of
the graph of G' restricted to A. The sets of the cover are of the form Vi = A{ x Bi,
with 1 < i < 6 where

Ai = U{x {on} 1 < i < 3,
Bi = {cm}, B2 =K,B3 = {off}; and
Ai = Utx {off}, 3 < i < 6,
B4 = {on}, B5 = K, B6 = {off}.
The finite automaton in the small topologies described in [24] assigns to each

join-irreducible in the lattice generated by the open sets Ai, a set of control laws.
That is, we attach to every non-empty join irreducible A\ in the lattice generated
by the A*'s, an open set

0(A'i) = UzeriBz,

where rt = {z \ A'{ C Az}.
In our case it is easy to check that we obtain the following assignments of 0{A'i)

for the join-irreducibles A'^.

1. the sets U{ x {on}, 1 < i < 3 are mapped respectively to {on},K, {off}.
2. the sets Ui x {off}, 3 < i < 6 are mapped respectively to {on},K,{off}.
3. each of the following four join irreducibles, (U\ n U2) x {on}), (U2 n U3) x on},

(U4 n U5) x {off}, (U5 n U6) x {off}, is mapped to K.

Let H(u, k) be any set-valued function which is consistent with the above assign-
ments where u ranges over the set U of join irreducibles in the lattices generated by
U\,U2,Uz and by U4,Us,U6. Formally, the finite automaton in the small topologies
corresponding to the above data is the following:

1. The set of states S = K.
2. The input alphabet is the set U.
3. The output alphabet V = K.
4. The nondeterministic output function is based on the set-valued function H

described in the assignments above.
5. The transition table M : U x K -¥ K is defined by M(u, k) = H(u, k).

The automaton can be used for control as follows. Let y be a water level and k
be the automaton current state.

1. The analog to digital converter transforms y into the least join-irreducible u
that contains y.

2. The automaton maps u nondeterministically into a pump state k' £ H(u,k),
and outputs k' to the plant.

This automaton is parameterized by the e entering the definitions of U[. Are there
values of e which guarantee that water level trajectories arising from the automaton
satisfy the control requirements? While considering this question we may ask whether
the automaton output function is related to a suitable feedback control function.
Should it happen to be a guiding feedback control function for some region of Q,
then the control automaton would satisfy the control requirements if it began its
operation in that region.

Consider the following "feedback control function": f{y,k) — H(u,k), where u
is the least join-irreducible that contains y. It is then easy to see that:

When k = on:

{K if y € (g-e-e,g + e + e)
on ifye[h-e,g-e-e]
off ifye[g + e + e,v-a-d]

When k = off,

(K ifye(h-e-e,h + e + e)
on if y € [u + b ■ d, h - e - e]
o//ify6[/i + e + e,g + e]

We have three objects now: the finite automaton in the small topologies, the
corresponding function /, and the control automaton associated with /. It is easy
to see that each of the three objects have the same set of water level trajectories
over the region A generated by the object. It follows that if / is a guiding feedback
control function over A, then the finite automaton with small topologies is correct.

We can conclude that / is a guiding feedback control function from the following
general fact and Theorem 17.

Proposition 18. Suppose A C PS x K and f,F are two set-valued functions over
A with values subsets of K. Suppose that the graph of f is a subset of the graph of
F and F is a guiding feedback control function. Then so is f.

Proof It is clear that all the plant trajectories generated by / constitute a
subset of those generated by F. The conclusion desired is immediate. □

Consider F, which is determined by g, h and e' = e+e. Assume that the premises
of Theorem 17 are satisfied by this data for some eo > 0. It follows from Theorem
17 that F is a guiding control function. It follows from the proposition above that
so is / for any e < eo-

Remark The control automaton Autl described above is a formal represen-
tation of the controller from [1]. That paper does not mention using a sampling

interval A > 0. We can interpret this as meaning that water level is measured and
tested continuously. Continuous measurement and testing in the presence of pump
delay can cause the above control automaton and the controller from [1] to produce
an infinite number of outputs in a finite interval of time, a physical impossibility.
Consider a time t at which the automaton outputs a request to change the pump
state. Suppose that just prior to that time the pump was "on" and the state of the
automaton was son. Suppose that the pump delay is d > 0. Since the water level
continues to increase during the delay, and the automaton continuously samples the
input, the automaton senses the condition y > g at all times in the interval (t, t + d).
Thus the automaton will produce an essential output at each time in that inter-
val. Our assumption that we sample (measure, sense) after each interval of length
A > d > 0 eliminates this source of unrealizable behavior. Sampling at times sep-
arated by a positive bound A > 0 cannot be dispensed in modeling a plant with
delays.

Later papers will investigate open covers and the corresponding finite automata
with small topologies for a variety of control problems.

References

1. R. Alur, C. Courcoubetis, T. Henzinger, Pei-Hsin Ho, Hybrid Automata: An Algorith-
mic Approach to the Specification and verification of hybrid Systems, Workshop on
Hybrid Systems, Denmark, October 1992.

2. P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, eds., Hybrid Systems II, Lecture
Notes in Computer Science vol. 999, Springer-Verlag, (1995).

3. K.R. Apt and E-R. Olderog, Verification of Sequential and Concurrent Programs,
Springer-Verlag, 1991.

4. J. P. Aubin, Differential Inclusions, Set Valued Maps, and Viability, Springer-Verlag,
1984.

5. J. P. Aubin, Set Valued Analysis, Birkhauser, 1990.
6. J. P. Aubin, Viability Theory, Birkhauser, 1991.
7. J-P.Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, 1984.
8. L.D. Berkovitz, Thirty Years of Differential Games, in Emilio O. Roxin (editor), Modern

Optimal Control, Marcel Dekker, Inc., 1989.
9. Robert S. Boyer, Milton W. Green, J. Strother Moore, The Use of a Formal Simulator

to Verify a Simple Real Time Control Program,Technical Report No. ICSCA-CMP-29,
Software Systems Science, National Science Foundation, Washington, D.C. 20550, July,
1982. DTIC Selected Sept. 16 1983.

10. J. R. Buchi, The Collected Works of J. Richard Büchi (S. MacLane,. Siefkes, eds.),
Springer-Verlag, 1990. 1990.

11. K. M. Chandy and J. Misra, An Introduction to Parallel Program Design, Addison-
Wesley, 1988.

12. A. F. Filippov, Differential Equations with Discontinuous Right Hand Side, Kluwer
Academic Publishers, 1988.

13. A. Friedman, Differential Games, Wiley- Interscience, 1971.
14. X. Ge, W. Kohn, A. Nerode, and J.B. Remmel, "Algorithms for Chattering Approxima-

tions to Relaxed Optimal Control. MSI Tech. Report 95-1, Cornell University. (1995)
15. X. Ge, W. Kohn, A. Nerode, and J.B. Remmel, "Feedback Derivations: Near Optimal

Controls for Hybrid Systems", Hybrid Systems III, Lecture Notes in Computer Science
1036, Springer-Verlag, (1995), 76-100.

16. R. Grossman, A. Nerode, H. Rischel, A. Ravn, eds., Hybrid Systems, Springer Lecture
Notes in Computer Science 736, (1993).

17. Y.Gurevich and L. Harrington, Trees, Automata and Games, Proc. of the 14th Ann.
ACM Symp. on Theory of Comp., pp. 60-65, 1982.

18. O. Hajek,Purs«i< Games, Mathematics in Science and Engineering, vol. 120, Academic
Press, New York, 1975.

19. J. Hilgert, K. H. Hofmann, and J. Lawson, Lie Groups, Convex Cones, and Semigroups,
Oxford Clarendon Press, 1988.

20. R. Isaacs,Differential Games, SIAM Series in Applied Mathematics, John Wiley and
Sons, Inc., 1965.

21. W. Kohn, Hierarchical Control Systems for Autonomous Space Robots, Proc. AIAA,
1988.

22. W. Kohn and A. Nerode, An Autonomous Control Theory: An Overview, Proc. IEEE
CACSD92, Napa Valley, March, 1992.

23. W. Kohn and A. Nerode, Multiple Agent Autonomous Control Systems, Proc. 31st
IEEE CDC Tucson, Ar., 2956-2966, 1993.

24. W. Kohn and A. Nerode, Models for Hybrid Systems: Automata, Topologies, Control-
lability, Observability, in [16], 1993.

25. W. Kohn and A. Nerode, Multiple Agent Autonomous Control, A Hybrid Systems
Architecture, to appear in Logical Methods: A Symposium in honor of Anil Nerode's
60th birthday, Birkhauser, 1993.

26. W. Kohn, A. Nerode, and J.B. Remmel, " Hybrid Systems as Finsler Manifolds: Finite
State Control as Approximation to Connections", In [2], (1995), 294-321

27. Kohn, W., Nerode, A. and Remmel, J.B., "Continualization: A Hybrid Systems Control
Technique for Computing", Proceedings of CESA'96, (1996), 507-511.

28. Kohn, W., Nerode, A. and Remmel, J.B., "Feedback Derivations: Near Optimal Con-
trols for Hybrid Systems", Proceedings of CESA'96, (1996), 517-521.

29. N.N. Krasovskii and A.I. Subbotin, Game-Theoretical Control Problems, Springer-
Verlag, 1988.

30. Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems,
Springer-Verlag, 1992.

31. E. B. Lee and L. Marcus. Foundations of optimal control theory, John Wiley &: Sons,
1967.

32. K. Marzullo, F. Schneider, N. Budhiraja, Derivation of Sequential, Real-Time, Process-
Control Programs, Technical Report 91- 1217, Department of Computer Science, Cor-
nell University, Ithaca, NY 14853-7501.

33. R. McNaughton, Infinite Games Played on Finite Graphs, Annals of Pure and Appl.
Logic, 65 (1993), 149-184.

34. A. Nerode and J.B. Remmel, A Model for Hybrid Systems, Hybrid System Workshop
Notes, MSI, Cornell University, Ithaca, NY, June 1990.

35. A. Nerode, J.B. Remmel and A. Yakhnis, "McNaughton Games and Extracting Strate-
gies for Concurrent Programs", to appear Annals of Pure and Applied Logic.

36. A. Nerode, A. Yakhnis, Modelling Hybrid Systems as Games, Proceedings of the Con-
ference on Decision and Control, pp.2947-2952, 1992.

37. A. Nerode, A. Yakhnis, Hybrid Games and Hybrid Systems, Technical Report No.
93-77, October 1993, Mathematical Sciences Institute, Cornell University, 409 College
Ave., Ithaca, NY 14850.

38. A. Nerode, A. Yakhnis, V. Yakhnis, Concurrent Programs as Strategies in Games, in
Logic from Computer Science, (Y. Moschovakis, ed.), Springer-Verlag, 1992.

39. A. Nerode, A. Yakhnis, V. Yakhnis, Distributed Programs as Strategies in Games, in
a volume honoring Anil Nerode 60th birthday, Birkheuser, 1994.

40. L.S. Pontryagin, On the Theory of Differential Games, Russian Mathematical Surveys
21 (No.4), pp. 193-246, 1966.

41. J. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall 1991.
42. E. D. Sontag, Mathematical Control Theory, Springer-Verlag, 1990.
43. V. I. Utkin, Sliding Modes in Control Optimization, Springer-Verlag, 1992.
44. J. Warga, Optimal Control of Differential and Functional Equations, Academic Press,

1972.
45. J. Warga, Some Selected Problems of Optimal Control, in Emilio O. Roxin (ed.), Mod-

ern Optimal Control, Marcel Dekker, Inc., 1989.
46. A. Yakhnis, Game-Theoretic Semantics for Concurrent Programs and Their Specifica-

tions, Ph. D. Diss., Cornell University, 1990.
47. A. Yakhnis, Hybrid Games, Technical Report 92-38, Mathematical Sciences Institute,

Cornell University, October 1992.
48. A. Yakhnis, V. Yakhnis, Extension of Gurevich-Harrington's Restricted Memory De-

terminacy Theorem, Ann. Pure and App. Logic 48, 277-297, 1990.
49. A. Yakhnis, V. Yakhnis, Gurevich-Harrington's games defined by finite automata, Ann.

Pure and App. Logic 62, 265-294, 1993.

